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GAUSSIAN MEASURES ASSOCIATED
TO THE HIGHER ORDER CONSERVATION LAWS

OF THE BENJAMIN-ONO EQUATION

 N TZVETKOV  N VISCIGLIA

A. – Inspired by the work of Zhidkov on the KdV equation, we perform a construction
of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-
Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We
also prove a property on the support of these measures leading to the conjecture that they are indeed
invariant by the flow of the Benjamin-Ono equation.

R. – Inspirés par le travail de Zhidkov sur l’équation KdV, nous construisons des mesures
gaussiennes à poids associées à une loi de conservation arbitraire de l’équation de Benjamin-Ono.
Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On
démontre aussi une propriété-clé des mesures qui nous conduit à conjecturer leur invariance par le flot
de l’équation.

1. Introduction and statement of the results

1.1. Measures construction

The main goal of this article is to construct weighted Gaussian measures associated with
an arbitrary conservation law of the Benjamin-Ono equation (BO), and thus to extend the
result of the first author [14] which deals only with the first conservation law. The analysis
contains several significant elaborations with respect to [14]; it requires an understanding of
the interplay between the structure of the conservation laws of the Benjamin-Ono equation
and the probabilistic arguments involved in the renormalization procedure defining the mea-
sures.

Let us recall that just like the KdV equation, the Benjamin-Ono equation is a basic dis-
persive PDE describing the propagation of one directional, long, small amplitude waves. The
difference between the KdV and BO equations is that the KdV equation describes surface
waves while the Benjamin-Ono equation models the propagation of internal waves. These
models have rich mathematical structure from both the algebraic and analytical viewpoints.
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In particular they have an infinite sequence of conservation laws. These aspects will be heavily
exploited in the present work.

Consider now the Benjamin-Ono equation

(1.1) ∂tu+H∂2
xu+ u∂xu = 0,

with periodic boundary conditions (for simplicity throughout the paper we fix the period to
be equal to 2π). In (1.1), H denotes the Hilbert transform acting on periodic distributions.
Thanks to the work of Molinet [11] (1.1) is globally well-posed inHs, s ≥ 0 (see [13, 7, 5] for
related results in the case when (1.1) is posed on the real line).

It is well-known that (smooth) solutions to (1.1) satisfy an infinite number of conservation
laws (see e.g., [10, 1]). More precisely for k ≥ 0 an integer, there is a conservation law of (1.1)
of the form

(1.2) Ek/2(u) = ‖u‖2
Ḣk/2

+Rk/2(u)

where Ḣs denotes the homogeneous Sobolev norm on periodic functions, and all the terms
that appear in Rk/2 are homogeneous of the order larger than or equal to three in u. In
Section 2, we will describe in more details the structure ofRk/2 for large k. Next we explicitly
write the conservation laws Ek/2 for k = 0, 1, 2, 3, 4:

E0(u) = ‖u‖2L2 ;

E1/2(u) = ‖u‖2
Ḣ1/2 +

1

3

∫
u3dx;

E1(u) = ‖u‖2
Ḣ1 +

3

4

∫
u2H(ux)dx+

1

8

∫
u4dx;

E3/2(u) = ‖u‖2
Ḣ3/2 −

∫
[
3

2
u(ux)2 +

1

2
uH(ux)2]dx

−
∫

[
1

3
u3H(ux) +

1

4
u2H(uux)]dx− 1

20

∫
u5dx;

E2(u) = ‖u‖2
Ḣ2 −

5

4

∫
[(ux)2Hux + 2uuxxHux]dx

+
5

16

∫
[5u2(ux)2 + u2H(ux)2 + 2uH(∂xu)H(uux)]dx

+

∫
[

5

32
u4H(ux) +

5

24
u3H(uux)]dx+

1

48

∫
u6dx

where
∫

is understood as the integral on the period (0, 2π).

Following the work by Zhidkov [15] (see also [2, 8]), one may try to define an invari-
ant measure for (1.1) by re-normalizing the formal measure exp(−Ek/2(u))du. This
re-normalization is a delicate procedure. One possibility would be first to re-normalize
exp(−‖u‖2

Ḣk/2
)du as a Gaussian measure on an infinite dimensional space and then to show

that the factor exp(−Rk/2(u)) is integrable with respect to this measure.

Since exp(−‖u‖2
Ḣk/2

) factorizes as an infinite product when we express u as a Fourier
series, we can define the re-normalization of exp(−‖u‖2

Ḣk/2
)du as the Gaussian measure
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induced by the random Fourier series

(1.3) ϕk/2(x, ω) =
∑
n 6=0

ϕn(ω)

|n|k/2
einx

(one may ignore the zero Fourier mode since the mean of u is conserved by the flow of (1.1)).
In (1.3), (ϕn(ω))n 6=0 is a sequence of standard complex Gaussian variables defined on a prob-
ability space (Ω, A, p) such that ϕn = ϕ−n (since the solutions of (1.1) should be real valued)
and (ϕn(ω))n>0 are independent. Let us denote by µk/2 the measure induced by (1.3). One
may easily check that µk/2(Hs) = 1 for every s < (k − 1)/2 while µk/2(H(k−1)/2) = 0.

In view of the previous discussion, one may consider exp(−Rk/2(u))dµk/2 as a candidate
of invariant measure for (1.1). There are two obstructions to do that, the first one already
appears in previous works on the NLS equation (see [2, 8]) and the KdV equation (see [15]),
while the second one is specific to the Benjamin-Ono equation. The first obstruction is that
exp(−Rk/2(u)) is not integrable with respect to dµk/2(u). This problem may be resolved by
restricting to invariant sets, which means to replace exp(−Rk/2(u)) by

(1.4)
k−1∏
j=0

χR(Ej/2(u))e−Rk/2(u) ,

where χR is a cut-off function defined as χR(x) = χ(x/R) with χ : R → R a continuous,
compactly supported function such that χ(x) = 1 for every |x| < 1. In the context of KdV or
NLS, the function defined in (1.4) is integrable with respect to the corresponding Gaussian
measure. Moreover if one takes the reunion over R > 0 of the supports of the functions
(1.4), then one obtains a set containing the support of µk/2. However, in the context of the
Benjamin-Ono equation, the restriction to invariant sets does not work as in (1.4) because
for everyR the following occurs: χR(E(k−1)/2(u)) = 0 almost surely on the support of µk/2.
One of the main points of this paper is to resolve this difficulty. This will be possible since one
controls the way thatE(k−1)/2(u) diverges on the support of µk/2. More precisely, forN ≥ 1

and k ≥ 2, we introduce the function

(1.5) Fk/2,N,R(u) =
( k−2∏
j=0

χR(Ej/2(πNu))
)
χR(E(k−1)/2(πNu)− αN )e−Rk/2(πNu)

where αN =
∑N
n=1

1
n and πN is the Dirichlet projector on Fourier modes n such that

|n| ≤ N . Here is our first result.

T 1.1. – For every k ∈ N with k ≥ 2, there exists a µk/2 measurable function
Fk/2,R(u) such that Fk/2,N,R(u) converges to Fk/2,R(u) in Lq(dµk/2) for every 1 ≤ q <∞. In
particular Fk/2,R(u) ∈ Lq(dµk/2). Moreover, if we set dρk/2,R ≡ Fk/2,R(u)dµk/2, we have⋃

R>0

supp(ρk/2,R) = supp(µk/2).

The above result for k = 1 was obtained by the first author in [14]. Many of the proba-
bilistic techniques involved in the proof of Theorem 1.1 are inspired by [3]. We also refer to
[4] where in the context of the 2d NLS the authors use the Wick ordered L2-cutoff, i.e., a
truncation of the L2-norm that depends on the parameter N .
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We conjecture that the measures ρk/2,R, k = 2, 3, · · · constructed in Theorem 1.1 are
invariant by the flow of the Benjamin-Ono equation established by Molinet [11], at least for
even values of k. In the sequel, for shortness, we denote ρk/2,R by ρk/2.

1.2. A property on the support of the measures

Let us now give our argument in support of the above-stated conjecture. For N ≥ 1, we
introduce the truncated Benjamin-Ono equation:

(1.6) ∂tu+H∂2
xu+ πN

(
(πNu)∂x(πNu)

)
= 0.

As in [6], one can define a global solution of (1.6) for every initial data u(0) ∈ L2(S1).
Indeed, one obtains that (1−πN )u(t) is given by the free Benjamin-Ono evolution with data
(1 − πN )u(0), while πNu(t) evolves under an N -dimensional ODE. This ODE has a well-
defined global dynamics since the L2 norm is preserved.

The main problem that appears when one tries to prove the invariance of ρk/2 is that even
if Ek/2 are invariants for the Benjamin-Ono equation they are not invariant under (1.6).
The invariance, however, holds in a suitable asymptotic sense as we explain below. Let us
introduce the real-valued functionGk/2,N , measuring the lack of conservation ofEk/2 under
the truncated flow (1.6), via the following relation

(1.7)
d

dt
Ek/2(πNu(t)) = Gk/2,N (πNu(t)),

where u(t) solves (1.6).
Denote by ΦN the flow of (1.6) and set dρN (u) ≡ Fk/2,N,R(u)dµk/2(u) so that by

Theorem 1.1, ρN converges in a strong sense to ρk/2 (the densities converge in anyLp(dµk/2),
p <∞). By using the Liouville theorem, one shows that for every µk/2 measurable set A,

ρN (ΦN (t)(A)) =

∫
A

e
−
∫ t

0
Gk/2,N (πNΦN (τ)(u(0))dτ

dρN (u(0)) + o(1) .

Hence, a main step towards a proof of the invariance of ρk/2 is to show that

(1.8)
∫ t

0

Gk/2,N (πNu(τ))dτ

converges to zero, where u(τ) is a solution of (1.6), with u(0) on the support of µk/2. Such
a property is relatively easy to be established if u(0) has slightly more regularity than the
typical Sobolev regularity on the support of µk/2. At the present moment, we are not able to
prove such a property on the support of µk/2. We shall, however, prove it if we make a first
approximation which consists of replacing u(τ) by u(0) in (1.8). Here is the precise statement.

T 1.2. – For every k ≥ 6 an even integer, we have

lim
N→∞

‖Gk/2,N (πNu)‖Lq(dµk/2) = 0, ∀q ∈ [1,∞),

where Gk/2,N is defined by (1.7).

Let us remark that the lack of invariance of conservation laws for the corresponding
truncated flows is a problem that appears also in other contexts. We refer in particular to
the papers [12] and [15], where this difficulty is resolved in the cases of the DNLS and KdV
equations respectively.
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