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HOFER’S METRICS AND BOUNDARY DEPTH

 M USHER

A. – We show that if (M, ω) is a closed symplectic manifold which admits a nontrivial
Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric
on the group of Hamiltonian diffeomorphisms of (M, ω) has infinite diameter, and indeed admits
infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies
to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic
to the diagonal in M ×M when M satisfies the above dynamical condition. To prove this, we use the
properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality
of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological
information.

R. – Nous montrons que si (M, ω) est une variété symplectique fermée qui admet un
champ vectoriel hamiltonien non-trivial dont toutes les orbites fermées contractiles sont constantes,
la métrique de Hofer sur le groupe des difféomorphismes hamiltoniens de (M, ω) a alors un diamètre
infini et admet donc des espaces vectoriels normés plongés quasi-isométriquement et de dimension
infinie. Une conclusion semblable s’applique à la métrique de Hofer sur différents espaces de sous-
variétés lagrangiennes, y compris les sous-variétés hamiltoniennes isotopiques à la diagonale en M×M

où M satisfait à la condition dynamique ci-dessus. Pour prouver cela, nous utilisons les propriétés d’une
quantité Floer-théorique appelée profondeur de bord, qui mesure la non-trivialité de l’opérateur limite
sur le complexe de Floer de manière à encoder des informations robustes de topologie symplectique.

1. Introduction

Let (M,ω) be a symplectic manifold and let H : [0, 1] ×M → R be a smooth function,
which is compactly supported in [0, 1]× int(M) in case M is noncompact or has boundary.
H then induces a time dependent Hamiltonian vector field by the prescription that

ω(·, XH(t, ·)) = dM (H(t, ·)),

and thence an isotopy φtH : M →M by the prescription that φ0
H = 1M and

d
dtφ

t
H(m) = XH(t, φtH(m)).
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The Hamiltonian diffeomorphism group Ham(M,ω) is by definition the set of diffeomor-
phisms φ : M →M which can be written as φ = φ1

H for someH as above (in particular ifM
is noncompact or has boundary our convention is that all elements of Ham(M,ω) are com-
pactly supported in the interior of M ). Of course Ham(M,ω) forms a group, all elements of
which are symplectomorphisms of (M,ω).

For a function H : [0, 1]×M → R as above define

oscH =

∫ 1

0

(
max
M

H(t, ·)−min
M

H(t, ·)
)
dt.

Now for φ ∈ Ham(M,ω) let

‖φ‖ = inf
{

oscH|φ1
H = φ

}
.

The Hofer metric on Ham(M,ω) is then defined by, for φ, ψ ∈ Ham(M,ω),

d(φ, ψ) = ‖φ−1 ◦ ψ‖.

As was shown for R2n in [20] and for general symplectic manifolds in [27], d is a nondegen-
erate, biinvariant metric on Ham(M,ω).

Notwithstanding a significant amount of fairly deep work on this metric, our under-
standing of its global properties remains somewhat limited. In particular, it is not yet known
whether the metric is always unbounded. It is widely believed that this is most likely the case,
and we provide in this paper further evidence for this belief, as follows:

T 1.1. – Suppose that a closed symplectic manifold (M,ω) admits a nonconstant
autonomous Hamiltonian H : M → R such that all contractible closed orbits of XH are
constant. Then the diameter of Ham(M,ω) with respect to Hofer’s metric is infinite. In fact,
there is a homomorphism

Φ: R∞ → Ham(M,ω)

such that, for all v, w ∈ R∞,

‖v − w‖`∞ ≤ d(Φ(v),Φ(w)) ≤ osc(v − w).

Theorem 1.1 is proven in Section 5.2.
To clarify notation, R∞ denotes the direct sum of infinitely many copies of R, i.e., the

vector space of sequences {vi}∞i=1 where vi ∈ R and all but finitely many vi are zero,
and for v = {vi}∞i=1 we write osc(v) = maxi,j |vi − vj | and ‖v‖`∞ = maxi |vi|. Thus
‖v‖`∞ ≤ osc(v) ≤ 2‖v‖`∞ , and if either all vi are nonnegative or all vi are nonpositive
then ‖v‖`∞ = osc(v). It will be apparent from the construction that Φ(v) is generated
by a Hamiltonian Gv with oscGv = oscv. From this it follows that, for those v ∈ R∞

with ‖v‖`∞ = osc(v), every segment of the path s 7→ Φ(sv) minimizes the Hofer length
among all paths connecting its endpoints. For comparison, there are criteria guaranteeing
that a path will be Hofer-length minimizing within its homotopy class in [39], [52] (and our
paths do satisfy these criteria), but (except in the rare case that Ham(M,ω) is known to be
simply connected) it seems to be unusual to find such globally length-minimizing paths in
the Hamiltonian diffeomorphism group of a closed symplectic manifold.

To put Theorem 1.1 into context we indicate some examples of symplectic manifolds
(M,ω) obeying its hypotheses:
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(A) Any positive-genus surface Σ with area formω admits Hamiltonians as in Theorem 1.1.
Indeed if γ ⊂ Σ is a noncontractible closed curve and U ∼= {(s, θ)|s ∈ (−ε, ε), θ ∈ S1}
is a Darboux-Weinstein neighborhood of γ and if f : (−ε, ε)→ R is a compactly sup-
ported smooth function then where H(s, θ) = f(s) for (s, θ) ∈ U and H(z) = 0

for z /∈ U , all orbits of XH either will be constant or will wrap around a noncon-
tractible loop parallel to γ.

Generalizing this somewhat, consider fiber bundles π : M → Σ which admit a
Thurston-type symplectic form Ω = Ω0 + Kπ∗ω where Ω0 is closed and fiberwise
symplectic and K ∈ R. The Ω0-orthogonal complements to the fibers determine a
horizontal subbundle ThM , and in order to ensure that Ω is symplectic one should take
K sufficiently large as to guarantee that at every point it holds that Ω|ThM is a positive
multiple of the pullback of ω. As long as this condition onK holds, one can check that
ifH : Σ→ R is as in the previous paragraph then ‹H = H◦πwill obey the hypothesis of
the theorem, as all orbits γ of X

H̃
which are not constant will be contained in π−1(U)

and will have
∫
γ
π∗dθ 6= 0. Of course this property depends only on the behavior of

the symplectic form near π−1(γ) ⊂ M and so the property will continue to hold for
suitable symplectic forms if instead the map π : M → Σ has singularities away from γ

(e.g., if π is a Lefschetz fibration).
(B) Work of Perutz implies that if Σ is a positive-genus surface and d ≥ 2 then the

symmetric product M = SymdΣ obeys the hypothesis of Theorem 1.1, when M

is equipped with any of the continuous family of Kähler forms from [46, Theo-
rem A]. Indeed, let γ : S1 → Σ be a homologically essential simple closed curve,
and let Σγ denote the result of surgery along γ (i.e., cut Σ along γ and cap off the
resulting boundary components by discs). Perutz then obtains a Lagrangian corre-
spondence V̂γ ⊂ SymdΣ × Symd−1Σγ with the property that the first projection
embeds V̂γ as a hypersurface Vγ ⊂ SymdΣ while the second projection exhibits
V̂γ as a S1-bundle over Symd−1Σγ . One can then find a tubular neighborhood
U = (−ε, ε) × Vγ ⊂ SymdΣ such that, where s denotes the (−ε, ε) coordinate, a
Hamiltonian H which is compactly supported in U and such that H|U depends only
on swill have the property that, at all points,XH either vanishes or is directed along the
fibers of the S1-bundle Vγ → Symd−1Σγ . Thus any nonconstant closed orbits of XH

are homotopic to iterates of these S1 fibers. It follows from [46, Lemma 3.16] that the
S1 fibers are homotopic in SymdΣ to loops of the form t 7→ {γ(t), p1, . . . , pd−1} for
any fixed choice of p1, . . . , pd−1 /∈ Im(γ). So the fact that γ is homologically essential
in Σ implies (by standard facts about the topology of symmetric products, see e.g.
the proof of [3, Theorem 9.1]) that the fibers have infinite order in π1(SymdΣ). Thus
indeed such a Hamiltonian H : SymdΣ→ R obeys the requirements of Theorem 1.1.

(C) A variety of symplectic manifolds (M,ω) which admit a nonconstant autonomous
Hamiltonian H : M → R such that XH has no nonconstant closed orbits at all
(contractible or otherwise) are exhibited in [60]. Especially in dimension four, these
examples are quite topologically diverse: they include for instance the elliptic surfaces
E(n) with n ≥ 2 as well as infinitely many manifolds homeomorphic but not dif-
feomorphic to them; the symplectic four-manifolds XG constructed by Gompf [19]
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having π1(XG) = G for any finitely presented group G; and simply-connected sym-
plectic four-manifolds whose Euler characteristics and signatures can be arranged to
realize many different values. In general, these examples have a hypersurface V ⊂ M

diffeomorphic to the three-torus such that a suitable Hamiltonian H supported near
V will have the property that XH points along an irrational line on the torus and so
has no nonconstant closed orbits. The construction in [60] requires ω to represent an
irrational de Rham cohomology class in H2(M ; R); it is not clear whether one can
obtain such Hamiltonians when [ω] is rational.

(D) Obviously, if (M,ω) obeys the hypothesis of Theorem 1.1 then so will (M ×N,ω⊕σ)

for any closed symplectic manifold (N, σ) (regardless of whether (N, σ) obeys the
hypothesis). Namely, we can just pull back the Hamiltonian H : M → R to M ×N .

(E) If (M,ω) obeys the hypothesis of Theorem 1.1 and if (M̃, ω̃) is obtained by blowing
up a sufficiently small ball B ⊂ M , then (M̃, ω̃) will also obey the hypothesis. For if
H : M → R is as in Theorem 1.1 and if the ballB is small enough thatH(B) is properly
contained in H(M), we can choose a nonconstant smooth function f : H(M) → R
such that f |

H(B)
= 0. Then since Xf◦H = f ′(H)XH , the vector field Xf◦H will still

have no nonconstant contractible closed orbits. But f ◦H now lifts to a Hamiltonian
on M̃ , whose Hamiltonian vector field again has no nonconstant contractible closed
orbits.

(F) A well-established criterion (used e.g. in [30]) for (M,ω) to obey the hypothesis of
Theorem 1.1 is for there to exist a Lagrangian submanifold L ⊂ M such that the
inclusion-induced map π1(L) → π1(M) is injective and such that L admits a Rie-
mannian metric of nonpositive sectional curvature (for in this case the metric on L

will have no contractible closed geodesics, and one can take a Hamiltonian supported
in a Darboux-Weinstein neighborhood of L which generates a reparametrization of
the geodesic flow). Of course the case of a noncontractible closed curve in a surface
as in (A) above is a baby example of this. In the presence of such a Lagrangian sub-
manifold, a somewhat weaker version of Theorem 1.1 was proven in [49]—namely
Py proves that for all N one has an embedding φ : ZN → Ham(M,ω) obeying a
bound C−1

N |v − w|`∞ ≤ d(φ(v), φ(w)) ≤ CN |v − w|`∞ . (Actually, our embedding
in Theorem 1.1 appears to reduce to Py’s in this special case, and so Theorem 1.1
improves Py’s constants.)

It should be clear from the examples that we have provided that the hypothesis of
Theorem 1.1 is substantially more general than the assumption that M contains a
π1-injective Lagrangian submanifold which admits a metric with nonpositive sectional
curvature. Writing 2n = dimM , so that dimL = n, in order for L to admit such a
metric L would have to be either flat and hence (by old results of Bieberbach) a finite
quotient of Tn, or else by [1, Theorem A] π1(L) would contain a nonabelian free group.
Thus π1(M) would have to contain either Zn or the free group on two generators.
But in many of the above examples π1(M) is not large enough to accommodate such
subgroups—indeed in some of the examples M is even simply connected.

There are however closed symplectic manifolds to which Theorem 1.1 can be proven not to
apply, namely those which have finite π1-sensitive Hofer-Zehnder capacity. It is shown in [35,
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Corollary 1.19] (using an argument that essentially dates back to [22]) that any closed sym-
plectic manifold which admits a nonvanishing genus-zero Gromov-Witten invariant count-
ing pseudoholomorphic spheres that pass through two generic points has finite π1-sensitive
Hofer-Zehnder capacity; if the manifold is simply connected one can instead use arbitrary-
genus Gromov-Witten invariants counting curves through two generic points. For instance
this applies to all closed toric manifolds (to see this one can use Iritani’s theorem [24] that a
toric manifold has generically semisimple big quantum homology, so that in particular the
class of a point is not nilpotent in quantum homology), and also to any simply-connected
closed symplectic four-manifold with b+ = 1 (this follows from work of Taubes and Li-Liu;
see [60, Appendix A] for the argument).

There is a substantial history of results showing Hofer’s metric on Ham(M,ω) to have infi-
nite diameter for a variety of symplectic manifolds (M,ω); Theorem 1.1 overlaps somewhat
with these prior results but also includes many new cases (and conversely, there are a some
examples which are covered by previous results but are not covered by Theorem 1.1, includ-
ing CPn). Notable early results in this direction include those in [28, Section II.5.3], [48],
[54, Section 5.1], and [9, Remark 1.10]. More recent work of McDuff [37, Lemma 2.7] shows
that the Hofer metric has infinite diameter provided that the asymptotic spectral invariants,
which a priori are defined on the universal cover H̃am(M,ω), descend to Ham(M,ω). [37,
Theorems 1.1 and 1.3] provide a range of sufficient conditions for the asymptotic spectral
invariants to descend, which are general enough to encompass nearly all of the cases in which
infinite Hofer diameter has been proven for closed (M,ω) until now.(1) The argument in [37]
combines a construction of Ostrover [45] of a path {φt}t∈R in Ham(M,ω) for any closed
(M,ω) for which the asymptotic spectral invariants (and hence the lifted Hofer pseudo-
norm on H̃am(M,ω)) diverge to∞, with a detailed analysis of the properties of the Seidel
representation [55] of π1(Ham(M,ω)) which finds that the asymptotic spectral invariants
descend and hence that Ostrover’s path has ‖φt‖ → ∞ under the conditions given in [37,
Theorems 1.1 and 1.3]. Roughly speaking, the hypotheses of [37, Theorems 1.1 and 1.3] ask
for (M,ω) to either have large minimal Chern number (at least n+ 1, or n under additional
hypotheses, if dimM = 2n) or else to admit few nonvanishing genus zero Gromov-Witten
invariants (for instance (M,ω) could be weakly exact or, under mild topological hypotheses,
negatively monotone). As is shown in [37], once these conditions are violated the asymptotic
spectral invariants can very well fail to descend—for instance by [37, Proposition 1.8] they
never descend when (M,ω) is a point blowup of a non-symplectically-aspherical manifold;
in this case the minimal Chern number of M can be as large as n− 1.

There are many manifolds obeying Theorem 1.1 which are not covered by the results
of [37] or by any other results on infinite Hofer diameter that I am aware of. For instance
McDuff ’s criteria are not robust under taking products or point blowups, whereas we have
noted above that (at least for sufficiently small blowups) the criterion in Theorem 1.1 is
preserved under these operations. Thus for instance while the non-symplectically-aspherical
minimal examples from (C) above obey both Theorem 1.1 and McDuff ’s criteria, when these

(1) The only exceptions to this that I am aware of are products of positive genus surfaces with other manifolds (for
which the result follows from the stabilized non-squeezing theorem of [29], as mentioned on [28, II, p. 64]—of course
this case is also covered by Theorem 1.1) and the case of a small blowup of CP 2 which is covered in [36].
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