
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 46 fascicule 5 septembre-octobre 2013

Marius CRAINIC & Ivan STRUCHINER

On the linearization theorem for proper Lie groupoids



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 46, 2013, p. 723 à 746

ON THE LINEARIZATION THEOREM
FOR PROPER LIE GROUPOIDS

 M CRAINIC  I STRUCHINER

A. – We revisit the linearization theorems for proper Lie groupoids around general orbits
(statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more
geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein)
is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the
precise statements of the Linearization Theorem (there has been some confusion on this, which has
propagated throughout the existing literature).

R. – Nous revisitons les théorèmes de linéarisation pour les groupoïdes de Lie propres
autour des orbites générales. Dans le cas du point fixe (connu sous le nom de théorème de Zung), nous
donnons une preuve plus courte et plus géométrique, basée sur l’argument de déformation de Moser.
Le passage au cas général est décrit de façon plus conceptuelle, comme manifestation de l’invariance
de Morita. Nous clarifions également l’énoncé précis du théorème de linéarisation (la littérature sur ce
sujet est assez confuse).

Introduction

The linearization theorem for Lie groupoids is a far reaching generalization of the tube
theorem (for Lie group actions), Ehresmann’s theorem (for proper submersions), and Reeb
stability (for foliations). It was first addressed by A. Weinstein as part of his program that
aims at a geometric understanding of Conn’s linearization theorem in Poisson Geometry [17].
Various partial results have been obtained over the last 10 years (see Section 1.4). However,
even though it was a general belief that every proper Lie groupoid is linearizable, such a
statement has never been made precise or proven. Moreover, even for the existing results there
has been some confusion regarding their precise statements (see also Section 1.4 below); this
confusion has propagated throughout the existing literature.

The aim of this note is to clarify the statement of the linearization theorem and to present
a simple geometric proof of it. Recall that, for any orbit O of a Lie groupoid G, there is a local
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model for G around O, the linearization N O( G). The theorem refers to the equivalence of G
and N O( G) near O. The main theorem we discuss is the following.

T 1. – Let G be a Lie groupoid over M , and O ⊂ M an orbit through x ∈ M . If
G is proper at x, then there are neighborhoods U and V of O such that G|U ∼= N O( G)|V .

The first consequence is a stronger version of the result obtained by joining the works of
Weinstein [18] and Zung [19]:

C 1. – If G is proper at x and O is of finite type, then one can find arbitrarily
small neighborhoods U of O in M such that G|U ∼= N O( G).

Of course, requiring U invariant is a natural condition. In this direction we have:

C 2. – If G is s-proper at x, then one can find arbitrarily small invariant neigh-
borhood U of O in M such that G|U ∼= N O( G).

Note that s-properness implies that O is compact. But also the property “one can find
arbitrarily small invariant neighborhoods” alone is another strong property of O (called
stability). Actually, if G is proper at x, then the stability of O forces s-properness at x. With
the mind at proper actions by non-compact Lie groups, we address the following problem
(where the orbit may be non-compact).

P 0.1. – If G is proper at x and s is trivial on an invariant neighborhood of x, under
what extra-hypothesis on O (if any) does it follow that one can find an invariant neighborhood
U of O in M such that G|U ∼= N O( G).

1. A more detailed introduction

1.1. Lie groupoid notations; properness

Throughout this paper, G will denote a Lie groupoid over a manifold M . Hence M is the
manifold of objects, G is the manifold of arrows (in this paper all manifolds are assumed
to be Hausdorff and second countable). We denote by s, t : G −→ M the source and the
target maps and by gh the multiplication (composition) of arrows g, h ∈ G (defined when
s(g) = t(h)).

D 1.1. – Let G be a Lie groupoid over M , x ∈M . We say that G is

– proper if the map (s, t) : G −→M ×M is a proper map.
– s-proper if the map s : G −→M is proper.
– proper at x if the map (s, t) is proper at (x, x), i.e., if any sequence (gn)n≥1 in G with

(s(gn), t(gn))→ (x, x) admits a convergent subsequence.
– s-proper at x if the map s is proper at x.
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R 1.2. – It follows from Proposition 3.5 that properness at x implies properness
at any point in the orbit O of x. Also, all the obvious implications above are strict. On the
other hand, Ehresmann’s theorem implies that, when the fibers of s are connected (which
happens in many examples!), s-properness at x is equivalent to the compactness of s−1(x). A
version of Ehresmann’s theorem (“at x”) implies that s-properness at x is actually equivalent
to the condition that s−1(x) is compact and s is trivial around x.

E 1.3. – The main example to have in mind is the Lie groupoid associated to the
action of a Lie group G on a manifold M . Known as the action Lie groupoid, and denoted
GnM , it is a Lie groupoid over M whose manifold of arrows is G×M , with source/target
defined by s(g, x) = x, t(g, x) = gx and the multiplication (g, x)(h, y) = (gh, y) (defined
when x = hy). The action groupoidGnM is proper (or proper at x) if and only if the action
of G on M is proper (or proper at x ∈ M , see e.g., [8]); s-properness corresponds to the
compactness of G.

E 1.4. – For any submersion π : X −→ Y one has a groupoid over X:

G(π) = X ×π X = {(x, x′) ∈ X ×X : π(x) = π(x′)},

with s(x, y) = y, t(x, y) = x and multiplication (x, y)(y, z) = (x, z). While G(π) is always
proper, it is s-proper if and only if π is a proper map. When Y is a point, the resulting
groupoid X ×X is known as the pair groupoid over X (always proper, and s-proper if and
only if X is compact).

E 1.5. – Associated to any principal G-bundle π : P −→ M there is a Lie
groupoid over M , known as the gauge groupoid of P , denoted Gauge(P ), which is the
quotient (P ×P )/G of the pair groupoid of P modulo the diagonal action ofG. It is proper
if and only if G is compact; it is s-proper if and only if P is compact.

1.2. Orbits and the local model

Given a Lie groupoid G over M , two points x, y ∈ M are in the same orbit of G if there
is an arrow g : x −→ y (i.e., s(g) = x, t(g) = y). This induces the partition of M by the
orbits of G. Each orbit carries a canonical smooth structure that makes it into an immersed
submanifold of M (cf. e.g., [12], but see also below).

Let O be an orbit. The linearization theorem at O provides a “linear” model for G
around O. This model is just the tubular neighborhood in the world of groupoids, for G
near O. More precisely, over O, G restricts to a Lie groupoid

G O := {g ∈ G : s(g), t(g) ∈ O}.

Its normal bundle in G sits over the normal bundle of O in M :

(1) N O( G) := T G/T G O dt
//

ds //
N O := TM/T O

as a Lie groupoid. The groupoid structure is induced from the groupoid structure of the
tangent groupoid T G (a groupoid over TM ); i.e., the structure maps (source, the target and
the multiplication) are induced by the differentials of those of G.
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There are various ways of realizing N O( G) more concretely. For instance, since
G O = s−1( O), its normal bundle in G is just the pull-back of N O by s:

N O( G) = {(g, v) ∈ G O × N O : s(g) = π(v)}.

With this, the groupoid structure comes from a (fiberwise) linear action of G O on N O. That
means that any arrow g : x −→ y in G O induces a linear isomorphism

(2) g : N x −→ N y.

Explicitly: given v ∈ N x, one chooses a curve g(t) : x(t) −→ y(t) in G with g(0) = g and
such that ẋ(0) ∈ TxM represents v, and then gv is represented by ẏ(0) ∈ TyM . With these,
the groupoid structure of N O( G) is given by

s(g, v) = v, t(g, v) = gv, (g, v)(h,w) = (gh,w).

D 1.6. – The Lie groupoid N O( G) is called the linearization of G at O.

E 1.7. – When x is a fixed point of G, i.e., Ox = {x}, then N Ox( G) is the
groupoid associated (cf. Example 1.3) to the action (2) of Gx on N x.

The Lie groupoid N O( G) can be further unravelled by choosing a point x ∈ O. The
outcome is a bundle-description of the linearization, which is closer to the familiar one from
group actions. Here are the details. We fix x ∈ O and we use the notation O = Ox. Associated
to x there are:

– the s-fiber at x, Px := s−1(x), which is a submanifold of G;
– the isotropy group at x,Gx = s−1(x)∩ t−1(x) which is a Lie group with multiplication

and smooth structure induced from the ones of G;
– the isotropy representation at x, N x = TxM/Tx Ox, viewed as a representation of Gx

with the action (2) described above;
– the isotropy bundle at x, which is Px viewed as a principal Gx-bundle with the action

induced by the multiplication of G

(3) t : Px −→ Ox.

It is this description that provides the orbit with its smooth structure: since the action of Gx
on Px is free and proper, it induces a smooth structure on Ox, making (3) into a smooth
bundle and Ox into an immersed submanifold of M . With these,

– the normal bundle N O is isomorphic to the associated vector bundle

N O
∼= Px ×Gx N x,

i.e., the quotient of Px × N x modulo the action γ · (g, v) = (gγ−1, γv) of Gx;
– similarly, the space of arrows of the linearization is

N O( G) ∼= (Px × Px)×Gx N x;

– In this new description of N O( G), the groupoid structure is given by

s([p, q, v]) = [q, v], t([p, q, v]) = [p, v], [p, q, v] · [q, r, v] = [p, r, v].
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