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AXIOM A VERSUS NEWHOUSE PHENOMENA
FOR BENEDICKS-CARLESON TOY MODELS

 C MATHEUS, C G. MOREIRA
 E R. PUJALS

A. – We consider a family of planar systems introduced in 1991 by Benedicks and
Carleson as a toy model for the dynamics of the so-called Hénon maps. We show that Smale’s
Axiom A property is C1-dense among the systems in this family, despite the existence of C2-open
subsets (closely related to the so-called Newhouse phenomena) where Smale’s Axiom A is violated.
In particular, this provides some evidence towards Smale’s conjecture that Axiom A is a C1-dense
property among surface diffeomorphisms.

The basic tools in the proof of this result are: (1) a recent theorem of Moreira saying that stable
intersections of dynamical Cantor sets (one of the main obstructions to Axiom A property for surface
diffeomorphisms) can be destroyed by C1-perturbations; (2) the good geometry of the dynamical
critical set (in the sense of Rodriguez-Hertz and Pujals) thanks to the particular form of Benedicks-
Carleson toy models.

R. – Nous considérons une famille de systèmes introduite en 1991 par Benedicks et Carleson
comme un modèle jouet pour la dynamique des applications d’Hénon. Nous montrons que l’axiome A
de Smale est une propriété C1-dense parmi les systèmes dans cette famille, même si nous trouvons aussi
des ensembles C2-ouverts (liés au phénomène de Newhouse) où l’axiome A de Smale n’est pas satisfait.
En particulier, notre résultat soutient la conjecture de Smale selon laquelle l’axiome A est une propriété
C1-dense parmi les difféomorphismes de surfaces.

Les outils utilisés dans la preuve de notre résultat sont : (1) un théorème récent de Moreira qui
dit que les intersections stables des ensembles de Cantor dynamiques (une des obstructions majeures
à l’axiome A pour les difféomorphismes de surfaces) peuvent être enlevées par des perturbations
C1-petites ; (2) la bonne géométrie de l’ensemble de points critiques dynamiques (au sens de Rodriguez-
Hertz et Pujals) due à la forme particulière des modèles jouets de Benedicks-Carleson.

1. Introduction

Uniform hyperbolicity (Smale’s Axiom A property) has been a long standing paradigm
of complete dynamical description: any dynamical system such that the tangent bundle over
its limit set (i.e., the set of accumulation points of all orbits) splits into two complementary
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subbundles which are uniformly forward (respectively backward) contracted by the tangent
map can be completely described from a geometrical and topological point of view.

Nevertheless, uniform hyperbolicity is a property less universal than it was initially
thought: there are non-empty open sets in the space of dynamics containing only non-hyperbolic
systems. Actually, Newhouse showed that for smooth surface diffeomorphisms, the unfold-
ing of a homoclinic tangency (a non transversal intersection of stable and unstable manifolds
of a periodic point) generates non-empty open sets of diffeomorphisms whose limit sets are
non-hyperbolic (see [9], [11], [12]).

It is important to say that a homoclinic tangency is (locally) easily destroyed by small
perturbation of the invariant manifolds. To get open sets of diffeomorphisms with persistent
homoclinic tangencies, Newhouse considers certain systems where the homoclinic tangency
is associated to an invariant hyperbolic set with large fractal dimension. In particular, he
studied the intersection of the local stable and unstable manifolds of a hyperbolic set (for
instance, a classical horseshoe), which, roughly speaking, can be visualized as a product
of two Cantor sets whose thicknesses are large. Newhouse’s construction depends on how
this fractal invariant varies with perturbations of the dynamics, and actually this is the
main reason that his construction works in the C2-topology. In fact, Newhouse argument
is based on the continuous dependence of the thickness with respect to C2-perturbations. A
similar construction in the C1-topology leading to same phenomena is unknown (indeed,
some results in the opposite direction can be found in [18] and [8]). In this setting, denoting
by Diffr(Mn) the set of Cr-diffeomorphisms of a compact n-dimensional manifold Mn

(without boundary), it was implicitly conjectured by Smale (cf. [17], Problems (6.10), item
(a), at page 779) that

Axiom A surface diffeomorphisms are C1 open and dense in Diff1(M2).

This question is explicitly called Smale’s conjecture in [1].
In the present paper, we consider a special set of maps acting on a two dimensional

rectangle, firstly introduced by Benedicks and Carleson as a toy model for the so-called Hénon
maps. For this special type of systems, we show that, if one deals with C2-topology, there are
non-empty open sets of diffeomorphisms which are not hyperbolic, while in theC1-topology,
the Axiom A property is open and dense.

Before proceeding further, let us briefly recall some features of Hénon maps and
Benedicks-Carleson toy models.

A typical family where the Newhouse’s phenomena hold is the so called Hénon maps.
In fact, it was proved in [19] that, for certain parameter of this family, the unfolding of a
tangency leads to a non-empty open set of non-hyperbolic diffeomorphisms.

On the other hand, numerical simulations indicate that the attractor of the Hénon map
(i.e., the closure of the unstable manifold of its fixed saddle point) has the structure of the
product of a line segment and a Cantor set with small dimension (when a certain parameter b
is close to zero). Although it is a great oversimplification (and many of the later difficulties
on the analysis of Hénon attractors arise because of the roughness of such approximation),
this idea gives a very good understanding of the geometry of the Hénon map. As a guide to
what follows, it is worth to point out that Benedicks and Carleson [3, Section 3, p. 89] have
constructed a model where the point moves on a pure product space (−1, 1)× K where K is
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the Cantor set obtained by repeated iteration of the division proportions (b, 1 − 2b, b) (i.e.,
K =

⋂
n≥0

A−n([0, b] ∪ [1 − b, 1]) where A|[0,b](x) = x/b and A|[1−b,1](x) = (1 − x)/b), and

the dynamics on (−1, 1) is given by a family of quadratic maps: in fact, the dynamical system
on (−1, 1) acts as a movement on a fan of lines, where each line has its own x-evolution, while
it is contracted in the y-direction (see Figure 1).

More precisely, consider a one parameterCr-family {f(x, y)}y∈[0,1] (here x is the variable
and y is the parameter) such that, for each fixed parameter y ∈ [0, 1],

f(., y) : [−1, 1]→ [−1, 1]

is a Cr-unimodal map (with respect to the variable x) verifying that 0 is a critical point
and f(0, y) is the maximum value of f(., y) for all y ∈ [0, 1]. We denote by Ur the set of
Cr-families of Cr-unimodal maps satisfying the conditions stated above.

Let k : [0, a]∪ [b, 1]→ [0, 1] be a Cr function such that k(0) = 0 = k(1), k(a) = 1 = k(b)

and |k′| > γ > 1. Put

K(x, y) =

{
K+(y) if x > 0,

K−(y) if x < 0,

where K+ = (k/[0,a])
−1,K− = (k/[b,1])

−1.

The bulk of this article is the study of the dynamics of Benedicks-Carleson toy models
F : ([−1, 1] \ {0})× [0, 1]→ [−1, 1]× [0, 1] given by

(1) F (x, y) = (f(x, y),K(x, y)) = (f(x, y),Ksgn(x)(y)).

10!1 !"!

F 1. Dynamics of F (x, y) = (1− a(y)x2, Ksgn(x)(y)) with a : [0, 1]→ (0, 2].

We denote by Dr the set of such maps F (with f(., y) ∈ Ur and k ∈ Cr) endowed with
the Cr-topology. Since the line {x = 0} is a discontinuity line of any F ∈ Dr, the maps F
are Cr-diffeomorphisms only on ([−1, 1]−{0})× [0, 1], and we will explain in Section 2 the
exact definition of the Cr-topology. Although this is not specially hard to do, we prefer to
postpone it (where we also revise the notion of hyperbolic sets of F ) to avoid the appearance
of unnecessary technicalities in this introductory section.

At this point, we are ready to state our main results:
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T A. – For r ≥ 2, there exists a non-empty open set N ⊂ Dr such that no F ∈ N
is Axiom A. Moreover, there exists a residual set R ⊂ N such that any F ∈ R has infinitely
many periodic sinks.

On the other hand, in the C1-topology, the opposite statement holds:

T B. – There exists an open and dense set V ⊂ D1 such that every F ∈ V is
Axiom A.

Concerning the proof of these results, a fundamental role will be played by certain points
in the line {x = 0}:

D 1. – Given F ∈ Dr, consider k : [0, a]∪ [b, 1]→ [0, 1] the Cantor map related
to F and denote by K 0 the Cantor set induced by k. For any y ∈ K 0, we call

c±y = (0±, y)

a critical point of F .

From the technical point of view, it is important to introduce the points c±y = (0±, y)

because we can extend F to them (via the formula F (0±, y) = (f(0, y),K±(y))), so that F
becomes defined on a compact set. Of course, we have to pay the price that this extension
of F is no longer continuous. In particular, let us make a few comments about the orbits
and the meaning of the non-wandering set Ω(F ) of this extension of F . While the orbits do
not intersect the line {x = 0}, we have nothing to say. On the other hand, when the iterate
(0, y) = F (z, w) of a point (z, w) ∈ ([−1, 1] − {0}) × [0, 1] hits the line {x = 0}, we will
consider that both points (0±, y) make part of the orbit of (z, w). Finally, we say that a point
(z, w) is non-wandering when any neighborhood U of (z, w) has some iterate Fn(U) such
thatFn(U)∩U 6= ∅. Here, a small neighborhood of a point (z, w) ∈ ([−1, 1]−{0})×[0, 1] is
a small standard (Euclidean) neighborhood, while a small neighborhood of the point (0+, y),
resp. (0−, y), is a “half-neighborhood” obtained from the intersection of [0, 1]× [0, 1], resp.
[−1, 0]× [0, 1], with a small standard (Euclidean) neighborhood of (0, y).

The relevance of the concept of critical point becomes clear from the following simple (but
conceptually important) remark:

R 1.1. – It follows from the definition that, if c±y ∈ Ω(F ) and c±y is not a periodic
sink, then Ω(F ) is not hyperbolic in the sense of Definition 3 below. This fact should be compared
to the notion of dynamical critical points of [15] and its role as the obstruction to the presence
of hyperbolicity/domination in dissipative compact invariant sets of surface diffeomorphisms.

Closing this introduction, we give the organization of the paper:

– In Section 3, we follow the same ideas of Newhouse to construct a C2-open set N
where the critical points cannot be removed from the limit set, so that the proof of
Theorem A can be derived from the combination of this fact and Remark 1.1.
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