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DIAGONALIZATION AND RATIONALIZATION OF
ALGEBRAIC LAURENT SERIES

 B ADAMCZEWSKI  J P. BELL

A. – We prove a quantitative version of a result of Furstenberg [20] and Deligne [14]
stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive
characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p

of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power
series of degree at most pA and height at most ApA, where A is an effective constant that only depends
on the number of variables, the degree of f and the height of f . This answers a question raised by
Deligne [14].

R. – Nous démontrons une version quantitative d’un résultat de Furstenberg [20] et Deligne
[14] : la diagonale d’une série formelle algébrique de plusieurs variables à coefficients dans un corps de
caractéristique non nulle est une série formelle algébrique d’une variable. Comme conséquence, nous
obtenons que, pour tout nombre premier p, la réduction modulo p de la diagonale d’une série formelle
algébrique de plusieurs variables f à coefficients entiers est une série formelle algébrique de degré au
plus pA et de hauteur au plus ApA, où A est une constante effective ne dépendant que du nombre de
variables, du degré de f et de la hauteur de f . Cela répond à une question soulevée par Deligne [14].

1. Introduction

A very rich interplay between arithmetic, geometry, transcendence and combinatorics
arises in the study of homogeneous linear differential equations and especially of those that
“come from geometry” and the related study of Siegel G-functions (see for instance [4, 16,
22, 30, 31, 32] for discussions that emphasize these different aspects). As an illustration, let
us recall a few of the many classical results attached to the differential equation

t(t− 1)y′′(t) + (2t− 1)y′(t) +
1

4
y(t) = 0 .
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• This differential equation has (up to multiplication by a scalar) a unique solution that
is holomorphic at the origin. This solution is a classical hypergeometric function

f1(t) := 2F1(1/2, 1/2; 1; t) =
∞∑
n=0

1

24n

Ç
2n

n

å2

tn ∈ Q[[t]] .

• It has also the following integral form:

f1(t) =
2

π

∫ π/2

0

dθ√
1− t sin2 θ

·

In particular,

πf1(t) =

∫ +∞

1

dx√
x(x− 1)(x− t)

is an elliptic integral and a period in the sense of Kontsevich and Zagier [22].

• For nonzero algebraic numbers t in the open unit disc, f1(t) and πf1(t) are both
known to be transcendental (see for instance the complete survey [33]). In particular,
the function f1 is a transcendental function over the field Q(t).

• This differential equation comes from geometry: it is the Picard–Fuchs equation of the
Legendre family of elliptic curves Et defined by the equation y2 = x(x− 1)(x− t).

• The Taylor expansion of f1 has almost integer coefficients. In particular,

f1(16t) =
∞∑
n=0

Ç
2n

n

å2

tn ∈ Z[[t]]

corresponds to a classical generating function in enumerative combinatorics (associ-
ated for instance with the square lattice walks that start and end at origin).

A remarkable result is that, by adding variables, we can see f1 as arising in a natural way
from a much more elementary function, namely a rational function. Indeed, let us consider
the rational function

R(x1, x2, x3, x4) :=
2

2− x1 − x2
· 2

2− x3 − x4
.

Then R can be expanded as

R =
∑

(i1,i2,i3,i4)∈N4

a(i1, i2, i3, i4) xi11 x
i2
2 x

i3
3 x

i4
4

=
∑

(i1,i2,i3,i4)∈N4

2−(i1+i2+i3+i4)

Ç
i1 + i2
i1

åÇ
i3 + i4
i3

å
xi11 x

i2
2 x

i3
3 x

i4
4 .

Collecting all the diagonals terms, we easily get that

∆(R) :=
∞∑
n=0

a(n, n, n, n)tn = f1(t) .
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More formally, given a field K and a multivariate power series

f(x1, . . . , xn) :=
∑

(i1,...,in)∈Nn

a(i1, . . . , in)xi11 · · ·xinn

with coefficients in K, we define the diagonal ∆(f) of f as the one variable power series

∆(f)(t) :=
∞∑
n=0

a(n, . . . , n)tn ∈ K[[t]] .

Another classical example which emphasizes the richness of diagonals is the following. The
power series

f2(t) :=
∞∑
n=0

n∑
k=0

Ç
n

k

å2Ç
n+ k

k

å2

tn ∈ Z[[t]]

is a well-known transcendental G-function that appears in Apéry’s proof of the irrationality
of ζ(3) (see [18]). It is also known to satisfy the Picard–Fuchs equation associated with a one-
parameter family ofK3 surfaces [6]. Furthermore, a simple computation shows that f2 is the
diagonal of the five-variable rational function

1

1− x1
· 1

(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3
∈ Z[[x1, . . . , x5]] .

These two examples actually reflect a general phenomenon. In the case where K = C,
diagonalization may be nicely visualized thanks to Deligne’s formula [14] via contour inte-
gration over a vanishing cycle. Formalizing this in terms of the Gauss–Manin connection
and De Rham cohomology groups, and using a deep result of Grothendieck, one can prove
that the diagonal of any algebraic power series with algebraic coefficients is a Siegel G-func-
tion that comes from geometry, that is, one which satisfies the Picard–Fuchs type equation
associated with some one-parameter family of algebraic varieties [4, 10]. As claimed by the
Bombieri–Dwork conjecture, this is a picture expected for allG-functions. Diagonals of alge-
braic power series with coefficients in Q thus appear to be a distinguished class of G-func-
tions. Originally introduced in the study of Hadamard products [7], diagonals have since been
studied by many authors and for many different reasons [8, 9, 10, 14, 15, 20, 23, 24, 30, 31].

R 1.1. – The same power series may well arise as the diagonal of different rational
functions, but it is expected that the underlying families of algebraic varieties should be
connected in some way, such as via the existence of some isogenies (see the discussion in [10]).
For instance, f1(t) is also the diagonal of the three-variable rational function

4

4− (x1 + x2)(1 + x3)
,

while f2(t) is also the diagonal of the six-variable rational function

1

(1− x1x2)(1− x3 − x4 − x1x3x4)(1− x5 − x6 − x2x5x6)
·

When K is a field of positive characteristic, the situation is completely different as shown
in the following nice result.
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D 1.1. – A power series f(x1, . . . , xn) ∈ K[[x1, . . . , xn]] is said to be algebraic
if it is algebraic over the field of rational functionsK(x1, . . . , xn), that is, if there exist polyno-
mials A0, . . . , Am ∈ K[x1, . . . , xn], not all zero, such that

∑m
i=0Ai(x1, . . . , xn)f(x1, . . . , xn)i = 0.

The degree of f is the minimum of the positive integers m for which such a relation holds.
The (naive) height of f is defined as the minimum of the heights of the nonzero polynomials
P (Y ) ∈ K[x1, . . . , xn][Y ] that vanish at f , or equivalently, as the height of the minimal
polynomial of f . The height of a polynomial P (Y ) ∈ K[x1, . . . , xn][Y ] is the maximum of
the total degrees of its coefficients.

T 1.1 (Furstenberg–Deligne). – Let K be a field of positive characteristic. Then
the diagonal of an algebraic power series in K[[x1, . . . , xn]] is algebraic.

Furstenberg [20] first proved the case where f is a rational power series and Deligne [14]
extended this result to algebraic power series by using tools from arithmetic geometry. Some
elementary proofs have then been worked out independently by Denef and Lipshitz [15],
Harase [21], Sharif and Woodcock [28] (see also Salon [26]). The present work is mainly
motivated by the following consequence of Theorem 1.1. Given a prime number p and a
power series f(x) :=

∑∞
n=0 a(n)xn ∈ Z[[x]], we denote by f|p the reduction of f modulo p,

that is

f|p(x) :=
∞∑
n=0

(a(n) mod p)xn ∈ Fp[[x]] .

Theorem 1.1 implies that if f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] is algebraic over Q(x1, . . . , xn),
then ∆(f)|p is algebraic over Fp(x) for every prime p. In particular, both the transcendental
functions f1 and f2 previously mentioned have the remarkable property of having algebraic
reductions modulo p for every prime p.

It now becomes very natural to ask how the complexity of the algebraic function ∆(f)|p
may increase when p runs along the primes. A common way to measure the complexity
of an algebraic power series is to estimate its degree and its height. Deligne [14] obtained
a first result in this direction by proving that if f(x, y) ∈ Z[[x, y]] is algebraic, then, for
all but finitely many primes p, ∆(f)|p is an algebraic power series of degree at most ApB ,
where A and B do not depend on p but only on geometric quantities associated with f . He
also suggested that a similar bound should hold for the diagonal of algebraic power series
in Z[[x1, . . . , xn]]. Our main aim is to provide the following answer to the question raised by
Deligne.

T 1.2. – Let f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] be an algebraic power series with
degree at most d and height at most h. Then there exists an effective constant A := A(n, d, h)

depending only on n, d and h, such that ∆(f)|p has degree at most pA and height at most ApA,
for every prime number p.

Theorem 1.2 is derived from the following quantitative version of the Furstenberg–
Deligne theorem.
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