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STATISTICAL PROPERTIES
OF ONE-DIMENSIONAL MAPS

UNDER WEAK HYPERBOLICITY ASSUMPTIONS

 J RIVERA-LETELIER  W SHEN

A. – For a real or complex one-dimensional map satisfying a weak hyperbolicity assump-
tion, we study the existence and statistical properties of physical measures, with respect to geometric
reference measures. We also study geometric properties of these measures.

R. – Nous étudions l’existence et des propriétés statistiques des mesures physiques d’une
application unidimensionnelle réelle ou complexe satisfaisant une hypothèse d’hyperbolicité faible, par
rapport à une mesure de référence géométrique. Nous étudions aussi des propriétés géométriques de
ces mesures.

1. Introduction

We study statistical properties of real and complex one-dimensional maps, under weak
hyperbolicity assumptions. For such a map f we are interested in the existence and statistical
properties of an invariant probability measure ν, supported on the Julia set of f , that is
absolutely continuous with respect to a natural reference measure. The reference measure µ
could be the Lebesgue measure on the phase space, or more generally a conformal measure
supported on the Julia set. Such a measure ν, when ergodic, has the important property of
being a physical measure with respect to µ. That is, for a subsetE of the phase space that has
positive measure with respect to µ, the measure ν describes the asymptotic distribution of
each forward orbit of f starting at a point in E.

For maps that are uniformly hyperbolic on their Julia sets, the pioneering work of Sinaı̆,
Ruelle, and Bowen [53, 4, 51] gives a satisfactory solution to these problems. See also [55]
for an analysis closer to the approach here. However, a one-dimensional map with a critical
point in its Julia set fails to be uniformly hyperbolic in a severe way. In order to control the
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effect of critical points in the Julia set, people often assume strong expansion along the orbits
of critical values. See for example [8, 41, 2, 43, 23, 57, 5] in the real setting, and [44, 15, 16]
in the complex setting. See [3] for a broad view.

For smooth interval maps, Bruin, Luzzatto and van Strien gave mixing rates upper bounds
closely related to the growth of derivatives at the critical values [5]. Our results reveal that,
rather surprisingly, the mixing rates can be much faster than the growth of derivatives at
critical values: an interval map f satisfying the Large Derivatives condition

lim
n→∞

|Dfn(v)| =∞, for each critical value v of f in the Julia set

together with other mild conditions, has a super-polynomially mixing absolutely continuous
invariant measure.

In the complex setting we show a similar result for a non-renormalizable polynomial f .
These are the first non-exponential upper bounds for mixing rates in the complex setting.
For a general rational map f without parabolic cycles we show that the summability condi-
tion with exponent 1 is enough to guarantee the existence of a super-polynomially mixing
absolutely continuous invariant measure.

We shall now state two results, one for the real case and another for the complex case,
and make comparisons with previous results. In order to avoid technicalities, we state these
results in a more restricted situation than what we are able to handle. See § 2.1 for a more
general formulation of our results and for precisions.

Recall that given a continuous map f acting on a compact metric spaceX, an f -invariant
Borel probability measure ν is called (strongly) mixing if for all ϕ,ψ ∈ L2(X, ν),

Cn(ϕ,ψ) :=

∫
X

ϕ ◦ fnψdν −
∫
X

ϕdν

∫
X

ψdν → 0

as n → ∞. Given γ > 0, we say that ν is polynomially mixing of exponent γ if for
each essentially bounded function ϕ and each Hölder continuous function ψ, there exists
a constant C(ϕ,ψ) > 0 such that

|Cn(ϕ,ψ)| ≤ C(ϕ,ψ)n−γ , for all n = 1, 2, . . .

Moreover, we say that ν is super-polynomially mixing if for all γ > 0 it is polynomially mixing
of exponent γ.

T I. – LetX be a compact interval and let f : X → X be a topologically exactC3

multimodal map with non-flat critical points, having only hyperbolic repelling periodic points.
Assume that for each critical value v of f we have

lim
n→∞

|Dfn(v)| =∞.

Then f has a unique invariant probability measure that is absolutely continuous with respect to
Lebesgue measure. Moreover, this invariant measure is super-polynomially mixing.

The topological exactness is assumed to obtain uniqueness and the mixing property of
the absolutely continuous invariant measure. For an interval map as in the theorem, the
existence of the absolutely continuous invariant measure was proved before in [7, 6], although
the argument in this paper provides an alternative proof. As mentioned above, our result on
mixing rates significantly strengthens the previous result [5], where super-polynomial mixing
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rates were only proved under the condition that for each α > 0 and each critical value v of f ,
we have |Dfn(v)|/nα → ∞. In fact, only assuming lim infn→∞ |Dfn(v)| sufficiently large,
our methods provide a definite polynomial mixing rate.

We now state a result for a complex rational map f of degree at least two. Often the
Lebesgue measure of the Julia set J(f) of f is zero. So the Lebesgue measure cannot be
used as a reference measure in general. Instead people often use a conformal measure on the
Julia set as a reference measure. Following Sullivan [55], we use conformal measures of ex-
ponent HD(J(f)) as geometric reference measures, where HD(J(f)) denotes the Hausdorff

dimension of J(f).

T II. – Let f be either one of the following:

1. an at most finitely renormalizable polynomial of degree at least two, that has only
hyperbolic periodic points, and such that for each critical value v of f in the Julia set,

lim
n→∞

|Dfn(v)| =∞;

2. a complex rational map of degree at least two, without parabolic cycles, and such that for
each critical value v of f in the Julia set,

∞∑
n=1

1

|Dfn(v)|
<∞.

Then f has a unique conformal measure µ of exponent HD(J(f)); this measure is supported on
the conical Julia set and its Hausdorff dimension is equal to HD(J(f)). Furthermore, there is a
unique invariant probability measure ν that is absolutely continuous with respect to µ, and the
measure ν is super-polynomially mixing.

Recall that for an integer s ≥ 1, a complex polynomial f is renormalizable of period s if
there are Jordan disks U b V such that the following hold:

– fs : U → V is proper of degree at least two;
– the set {z ∈ U : fsn(z) ∈ U for all n = 1, 2, . . .} is a connected proper subset of J(f);
– for each critical point c of f , there exists at most one j ∈ {0, 1, . . . , s − 1} with
c ∈ f j(U).

We say that f is infinitely renormalizable if there are infinitely many s for which f is renor-
malizable of period s.

For a complex polynomial f , hypothesis 1 of Theorem II is weaker than hypothesis 2.

Theorem II gives the first non-exponential mixing rates in the complex setting. As for
the existence of the absolutely continuous invariant measure, this result gives a significant
improvement of the previous result of Graczyk and Smirnov [16, Theorem 4]. Their result
applies to a rational map f satisfying the following strong form of the summability condition,
for a sufficiently small α ∈ (0, 1),

(1)
∞∑
n=1

n

|Dfn(v)|α
<∞, for every critical value v of f in J(f).
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For each α ∈ (0, 1), the Fibonacci quadratic polynomial f0 fails to satisfy this condition,
although for every α > 0

∞∑
n=1

1

|Dfn0 (v)|α
<∞, where v is the finite critical value of f0,

see Remark 2.5. So Theorem II implies that the Fibonacci quadratic polynomial f0 has a
super-polynomially mixing absolutely continuous invariant measure.

R 1.1. – In the proof of Theorems I and II we construct the absolutely continuous
invariant measure by way of an inducing scheme with a super-polynomial tail estimate and
some additional technical properties, see § 2.2. The results of [58] imply that this measure
is super-polynomially mixing and that it satisfies the Central Limit Theorem for Hölder
continuous observables. It also follows that the absolutely continuous invariant measure has
other statistical properties, such as the Local Central Limit Theorem, and the Almost Sure
Invariance Principle, see e.g., [14, 35, 36, 56].

For a map f satisfying the hypotheses of Theorem I or Theorem II we show the density of
the absolutely continuous invariant measure has the following regularity: if we denote by `
the maximal order of a critical point of f in the Julia set, then for each p ∈ (0, `/(` − 1))

the invariant density belongs to the space Lp. We note that for each p > `/(` − 1) the
invariant density does not belong toLp, see Remark 2.17. In the real case the regularity of the
invariant density was shown in [6, Main Theorem]; see also [43] for the case of unimodal maps
satisfying a summability condition with a certain exponent. In the complex setting our result
seems to be the first unconditional one. For rational maps satisfying a summability condition
with a sufficiently small exponent, a similar result was shown in [16, Corollary 10.1] under
an integrability assumption on the conformal measure µ that was first formulated in [44].
Actually, in the complex case we shall prove for each ε > 0 the following regularity of the
conformal measure µ: for every sufficiently small δ > 0 we have for every x ∈ J(f),

δHD(J(f))+ε ≤ µ(B(x, δ)) ≤ δHD(J(f))−ε.

The lower bound is [28, Theorem 1], while the upper bound is new and implies the integra-
bility condition for each exponent η < HD(J(f)), see (3) in § 2.1.

Let us say a few words on our strategy. Prior to this work, it has been shown that a map
satisfying the assumptions of Theorem I or of Theorem II has the following two expand-
ing properties: “expansion away from critical points” and “backward contraction”. Roughly
speaking, the first property means that outside any given neighborhood of the critical points
the map is uniformly hyperbolic; the second property means that a return domain to a ball
of radius δ centered at a critical value is much smaller than δ. See § 2.1 for the precise defi-
nitions and references, as well as our “Main Theorem” stated for maps satisfying these two
expanding properties.

In this paper, we provide a finer quantification of the expansion features of a map that sat-
isfies the two properties stated above. Firstly, we show that the components of the preimages
of a small ball intersecting the Julia set shrink at least at a super-polynomial rate (Theorem A
in § 2.2.1). This unexpected result represents a significant improvement on the estimate of the
same type in [16, Proposition 7.2], for rational maps satisfying the summability condition
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