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FINITENESS OF K3 SURFACES
AND THE TATE CONJECTURE

 M LIEBLICH, D MAULIK  A SNOWDEN

A. – Given a finite field k of characteristic p ≥ 5, we show that the Tate conjecture holds
for K3 surfaces over k if and only if there are only finitely many K3 surfaces defined over each finite
extension of k.

R. – Étant donné un corps k fini de caractéristique p ≥ 5, nous montrons que la conjecture
de Tate pour les surfaces K3 sur k est vérifiée si et seulement s’il existe un nombre fini de surfaces K3
définies sur chaque extension finie de k.

1. Introduction

Given a class of algebraic varieties, it is reasonable to ask if there are only finitely many
members defined over a given finite field. While this is clearly the case when the appropriate
moduli functor is bounded, matters are often not so simple. For example, consider the case
of abelian varieties of a given dimension g. There is no single moduli space parameterizing
them; rather, for each integer d ≥ 1 there is a moduli space parameterizing abelian varieties
of dimension g with a polarization of degree d. It is nevertheless possible to show (see [23,
Theorem 4.1], [14, Corollary 13.13]) that there are only finitely many abelian varieties over a
given finite field, up to isomorphism. Another natural class of varieties where this difficulty
arises is the case of K3 surfaces. As with abelian varieties, there is not a single moduli space
but rather a moduli space for each even integer d ≥ 2, parameterizing K3 surfaces with a
polarization of degree d.

In this paper, we consider the finiteness question for K3 surfaces over finite fields. Given
a K3 surface X defined over a finite field k of characteristic p, the Tate conjecture predicts
that the natural map

Pic(X)⊗Q` → H2
ét(Xk,Q`(1))Gal(k/k)

is surjective for ` 6= p. It admits many alternate formulations; for example, it is equivalent to
the statement that the Brauer group ofX is finite. We say thatX/k satisfies the Tate conjecture
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over some extension k′/k (resp. k) if the Tate conjecture holds for the base change Xk′ (resp.
for all base changes Xk′ with k′/k finite).

Our main result is that this conjecture is essentially equivalent to the finiteness of the set
of K3 surfaces over k. Precisely:

M T. – Let k be a finite field of characteristic p.

1. Assume p ≥ 3. There are only finitely many isomorphism classes of K3 surfaces over k
that satisfy the Tate conjecture over k.

2. Assume p ≥ 5. If there are only finitely many isomorphism classes of K3 surfaces over
the quadratic extension k′ of k then every K3 surface over k satisfies the Tate conjecture
over k′.

In particular, if p ≥ 5, the Tate conjecture holds for all K3 surfaces over k if and only if there
are only finitely many K3 surfaces defined over each finite extension of k.

As the Tate conjecture is known for K3 surfaces of finite height in characteristic at
least 5 [16], we obtain the following unconditional corollary:

C. – If p ≥ 5 then there are only finitely many isomorphism classes of K3 sur-
faces of finite height defined over k.

Our argument proceeds as follows. To obtain finiteness from Tate, it suffices to prove the
existence of low-degree polarizations on K3 surfaces over k. In order to do this, we use the
Tate conjecture in both `-adic and crystalline cohomology to control the possibilities of the
Néron-Severi lattice. For the other direction, we use the finiteness statement and the existence
of infinitely many Brauer classes to create a K3 surface with infinitely many twisted Fourier-
Mukai partners. Since this cannot happen in characteristic zero, we obtain a contradiction
by proving a lifting result. This argument does not rely on [16] (as it did in an earlier version
of this paper).

Notation. Throughout, k denotes a finite field of characteristic p and cardinality q = pf . We
fix an algebraic closure k of k.
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and the referees for many helpful comments and discussions. M.L. is partially supported
by NSF grant DMS-1021444, NSF CAREER grant DMS-1056129, and the Sloan Foun-
dation. D.M. is partially supported by a Clay Research Fellowship.

2. Tate implies finiteness

2.1. Discriminant bounds for the étale and crystalline lattices

In this section, we produce bounds on the discriminants of certain lattices constructed
from the étale and crystalline cohomologies of K3 surfaces over k. We begin by recalling
some terminology. Let A be a principal ideal domain. By a lattice over A, we mean a finite
free A module M together with a symmetric A-linear form (, ) : M ⊗A M → A. We say
that M is non-degenerate (resp. unimodular) if the map M → HomA(M,A) provided by the
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pairing is injective (resp. bijective). The discriminant of a lattice M , denoted disc(M), is the
determinant of the matrix (ei, ej), where {ei} is a basis for M as an A-module; it is a well-
defined element ofA/(A×)2. The latticeM is non-degenerate (resp. unimodular) if and only
if its discriminant is non-zero (resp. a unit). Note that the valuation of disc(M) at a maximal
ideal of A is well-defined.

We will need a simple lemma concerning discriminants:

L 2.1.1. – Let A be a discrete valuation ring with uniformizer t. Let M be a lattice
over A and let M ′ ⊂ M be an A-submodule such that M/M ′ has length r as an A-module.
Regard M ′ as a lattice by restricting the form from M . Then disc(M ′) = t2r disc(M) up to
units of A.

Proof. – Let e1, . . . , en be a basis forM and let f1, . . . , fn be a basis forM ′. LetB be the
matrix (ei, ej) and let B′ be the matrix (fi, fj). Thus disc(M) = detB and disc(M ′) = detB′.
Let C ∈ Mn(A) be the change of basis matrix, so that fi = Cei. Then det(C) = tr up to
units of A. As B′ = CtBC, the result follows.

The following general result on discriminant bounds will be used several times in what
follows.

P 2.1.2. – Fix a positive integer r and a non-negative even integer w. There
exist constants C and C ′, depending only on r, w and q, with the following property.

LetE be a finite unramified extension of Q` with ring of integers O. LetM be a lattice over O
of rank r equipped with an endomorphism φ. Let v0 be the `-adic valuation of disc(M). Assume
that the characteristic polynomial of φ belongs to Z[T ], that all eigenvalues of φ on M [1/`] are
Weil q-integers of weight w and that qw/2 is a semi-simple eigenvalue of φ on M [1/`].

1. If ` > C then the discriminant Mφ=qw/2 has `-adic valuation at most v0.
2. The discriminant of Mφ=qw/2 has `-adic valuation at most C ′ + v0.

Proof. – We first define the constants C and C ′. Let W be the set of all Weil q-integers of
weightw and degree at most r. It is easy to bound the coefficients of the minimal polynomial
of an element of W , and so one sees that W is a finite set. Let S denote the set of elements
of Z[T ] which are monic of degree r and whose roots belong to W . Clearly, S is a finite set;
enumerate its elements as f1(T ), . . . , fm(T ). We can factor each fi(T ) as gi(T )hi(T ), where
gi(T ) is a power of T − qw/2 and hi(T ) is an element of Z[T ] which does not have qw/2 as a
root. For each i, pick rational polynomials ai(T ) and bi(T ) such that

ai(T )gi(T ) + bi(T )hi(T ) = 1.

Let Q be the least common multiple of the denominators of the coefficients of ai(T )

and bi(T ). Let s be the maximal integer such that `s divides Q, for some prime `, and let `0
be the largest prime dividing Q. We claim that we can take C = `0 and C ′ = 2rs.

We now prove these claims. Thus let M and φ be given, and put N = Mφ=qw/2 . The
characteristic polynomial of φ belongs to S, and is thus equal to fi(T ) for some i. Put
M1 = hi(φ)M andM2 = gi(φ)M . One easily sees thatM1⊕M2 is a finite index O-submodule
of M and that M1 and M2 are orthogonal. Furthermore, M1 is contained in N , since
qw/2 is a semi-simple eigenvalue of φ, and has finite index.
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Suppose that ` > C. Then ai(T ) and bi(T ) belong to O[T ] and so M = M1 ⊕M2. Thus
disc(M) = disc(M1) disc(M2). It follows that disc(M1) has `-adic valuation at most v0. As
N and M1 are saturated in M and M1 ⊂ N , we have N = M1, and so (1) follows.

Now suppose that ` is arbitrary. Then `sai(T ) and `sbi(T ) belong to O[T ]. It follows
that M1 ⊕M2 contains `sM , and so M/(M1 ⊕M2) has length at most rs as an O-module.
Lemma 2.1.1 shows that disc(M1) disc(M2) divides `2rs disc(M), and thus has `-adic val-
uation at most 2rs + v0 = C ′ + v0. The lemma also shows that disc(N) divides disc(M1),
which proves (2).

Let X be a K3 surface over k. For a prime number ` 6= p put

M`(X) = H2
ét(Xk,Z`), N`(X) = M`(X)φ=q.

Then M`(X) is a free Z`-module of rank 22, and the cup product gives it the structure of
a unimodular lattice. The space M`(X) admits a natural Z`-linear automorphism φ, the
geometric Frobenius element of Gal(k/k). The map φ does not quite preserve the form, but
satisfies (φx, φy) = q2(x, y). It is known [4] that the action of φ on M`(X) is semi-simple.
We give N`(X) the structure of a lattice by restricting the form from M`(X).

P 2.1.3. – There exist constants C1 = C1(k) and C2 = C2(k) with the
following properties. Let X be a K3 surface over k and let ` 6= p be a prime number. Then

1. For ` > C1, the discriminant of N`(X) has `-adic valuation zero.
2. The discriminant of N`(X) has `-adic valuation at most C2.

Proof. – This follows immediately from Proposition 2.1.2 with r = 22 andw = 2, applied
to M = M`(X). Note that v0 = 0.

We also need a version of the above result at p. Let W = W (k) be the Witt ring of k. Put

Mp(X) = H2
cris(X/W ), Np(X) = Mp(X)φ0=p.

Then Mp(X) is a free W -module of rank 22, and the cup product gives it the structure of
a unimodular lattice. The lattice Mp(X) admits a natural semilinear automorphism φ0, the
crystalline Frobenius. The map φ = φf0 is W -linear (where q = pf ). We have (φ0x, φ0y) =

p2φ0((x, y)). (Note: the φ0 on the right is the Frobenius on W .) Since φ0 is only semi-linear,
Np(X) is not aW -module, but a Zp-module. We giveNp(X) the structure of a lattice via the
form on Mp(X).

We say that an eigenvalue α of a linear map is semi-simple if the α-eigenspace coincides
with the α-generalized eigenspace. We now come to the main result at p:

P 2.1.4. – There exists a constant C3 = C3(k) with the following property.
Let X be a K3 surface over k. Assume that q is a semi-simple eigenvalue of φ on Mp(X)[1/p].
Then the discriminant of Np(X) has p-adic valuation at most C3.

Proof. – Let X be given, and put N ′ = Mp(X)φ=q, so that Np(X) = (N ′)φ0=p.
Proposition 2.1.2, with r = 22 and w = 2, bounds the p-adic valuation of disc(N ′) (as a
lattice overW ) in terms of k; in fact, the produced bound is the numberC2 from the previous
proposition. The following lemma (which defines a constant C4) now shows that the p-adic
valuation of disc(Np(X)) is bounded by C3 = C2f + 44C4f .
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