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MICROLOCAL LIMITS OF PLANE WAVES
AND EISENSTEIN FUNCTIONS

 S DYATLOV  C GUILLARMOU

A. – We study microlocal limits of plane waves on noncompact Riemannian mani-
folds (M, g) which are either Euclidean or asymptotically hyperbolic with curvature −1 near infinity.
The plane waves E(z, ξ) are functions on M parametrized by the square root of energy z and the
direction of the wave, ξ, interpreted as a point at infinity. If the trapped setK for the geodesic flow has
Liouville measure zero, we show that, as z → +∞, E(z, ξ) microlocally converges to a measure µξ, in
average on energy intervals of fixed size, [z, z + 1], and in ξ. We express the rate of convergence to the
limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate—when
the flow is Axiom A on the trapped set, this yields a negative power of z. As an application, we obtain
Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in
terms of the classical escape rate.

R. – Dans ce travail, nous étudions les mesures microlocales des fonctions de type ondes
planes sur des variétés non compactes (M, g) qui, près de l’infini, sont euclidiennes ou asymptotique-
ment hyperboliques avec courbure−1. Les ondes planesE(z, ξ) sont des fonctions surM paramétrées
par la racine carrée de l’énergie z et la direction ξ de l’onde, interprétée comme un point à l’infini. Si
l’ensemble captéK pour le flot géodésique est de mesure de Liouville nulle, nous montrons que, quand
z → +∞, E(z, ξ) converge microlocalement vers une certaine mesure µξ, en moyenne en ξ et en éner-
gie z sur des intervalles de taille fixe. On exprime la vitesse de convergence vers la limite en fonction de
la vitesse de fuite du flot géodésique et de son taux maximal d’expansion. Quand le flot est Axiom A
sur K, la vitesse de convergence est une puissance négative de z. Enfin, en guise d’application, nous
donnons des développements asymptotiques de type Weyl à plusieurs termes pour les traces locales de
projecteurs spectraux, avec un reste dépendant de la vitesse de fuite du flot.

For a compact Riemannian manifold (M, g) of dimension dwhose geodesic flow is ergodic
with respect to the Liouville measure µL, quantum ergodicity (QE) of eigenfunctions [48,
58, 7] states that any orthonormal basis (ej)j∈N of eigenfunctions of the Laplacian with
eigenvalues z2

j , has a density one subsequence (ejk) that converges microlocally to µL in the
following sense: for each symbol a ∈ C∞(T ∗M) of order zero,

(1.1) 〈Ophjk
(a)ejk , ejk〉L2(M) →

1

µL(S∗M)

∫
S∗M

a dµL.
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372 S. DYATLOV AND C. GUILLARMOU

Here S∗M stands for the unit cotangent bundle, Oph(a) denotes the pseudodifferential
operator obtained by quantizing a (see Section 3.1), and we put hj = z−1

j . The proof uses
the following integrated form of quantum ergodicity [25]:

(1.2) hd−1
∑

h−1≤zj≤h−1+1

∣∣∣∣〈Oph(a)ej , ej〉L2 − 1

µL(S∗M)

∫
S∗M

a dµL

∣∣∣∣→ 0 as h→ 0.

See Appendix D for a short self-contained proof of this result using the methods of this paper.
In the present paper, we consider a non-compact complete Riemannian manifold (M, g)

and show that generalized eigenfunctions of the Laplacian onM known in scattering theory
as distorted plane waves or Eisenstein functions, converge microlocally on average, similarly
to (1.2), with the limiting measure µξ depending on the direction of the plane wave ξ—see
Theorem 1. We also give estimates on the rate of convergence in terms of classical quantities
defined from the geodesic flow on M—see Theorem 2.

Our microlocal convergence of plane waves is similar in spirit to the QE Results (1.1)
and (1.2). However, unlike the case of QE where ergodicity of the geodesic flow is essential,
our result is based on a different phenomenon, roughly described as dispersion of plane waves.
This difference manifests itself in the proofs as follows: instead of averaging an observable
along the geodesic flow as in the standard proof of quantum ergodicity, we propagate it. See
Section 2 for an outline of the proofs of Theorems 1 and 2.

Geometric assumptions near infinity. – The manifold M has dimension d = n + 1. For our
results to hold, we need to make several assumptions on the geometry of (M, g) near infinity
and on the spectral decomposition of its Laplacian ∆. They are listed in Section 4 and we
check in Sections 6 and 7 that they are satisfied in each of the following two cases:

1. there exists a compact setK0 ⊂M such that (M\K0, g) is isometric toRn+1\B(0, R0)

with the Euclidean metric g0 for someR0 > 0; hereB(0, R0) denotes the ball centered
at 0 of radius R0,

2. (M, g) is an asymptotically hyperbolic manifold in the sense that it admits a smooth
compactification M and there exists a smooth boundary defining function x such that
in a collar neighborhood of the boundary ∂M , the metric has the form

(1.3) g =
dx2 + h(x)

x2
,

where h(x) is a smooth 1-parameter family of metrics on ∂M for x ∈ [0, ε). We further
assume that g has sectional curvature −1 in a neighborhood of ∂M .

In case (1), we call (M, g) Euclidean near infinity, while in case (2), we call it hyperbolic near in-
finity. Case (2) in particular includes convex co-compact hyperbolic quotients Γ\Hn+1—see
Appendix A. Other possible geometries are discussed in Section 2.1.

Distorted plane waves/Eisenstein functions. – Let ∆ be the (nonnegative) Laplace-Beltrami
operator on M . In the study of the relation between classical dynamics and high energy
behavior it is natural to use the semiclassically rescaled operator h2∆, with h > 0 small
parameter tending to zero.

The operator h2∆ has continuous spectrum on a half-line [c0h
2,∞) (here c0 is 0 for the

Euclidean and n2/4 for the hyperbolic case) and possibly a finite number of eigenvalues
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in (0, c0h
2). The continuous spectrum is parametrized by distorted plane waves (or Eisenstein

functions in the hyperbolic case) Eh(λ, ξ) ∈ C∞(M), satisfying for λ ∈ R,

(1.4) (h2(∆− c0)− λ2)Eh(λ, ξ) = 0.

Because of the h-rescaling, the effective spectral parameter is λ/h. Here ξ lies on the bound-
ary ∂M of a compactification M of M . We can think of an element of ∂M as the direction
of escape to infinity for a non-trapped geodesic; then ξ is the direction of the outgoing part
of the plane wave Eh(λ, ξ) at infinity.

For instance, in the case of manifolds Euclidean near infinity, c0 = 0, ∂M = Sn is the
sphere, and for m ∈M \K0 ' Rn+1 \B(0, R0),

Eh(λ, ξ;m) = e
iλ
h ξ·m + Einc,

where Einc is incoming in the sense that there exists f ∈ C∞(Sn) such that
[Einc(λ, ξ;m)− |m|−n2 e−iλh |m|f( m

|m| )]|M\K0
∈ L2, or equivalently Einc lies in the image

of C∞0 (Rn+1) under the free incoming resolvent (h2∆ − (λ − i0)2)−1 of the Laplacian
on Rn+1). These conditions provide a unique characterization of Eh(λ, ξ). We can also
write Eh(λ, ξ) = E(λ/h, ξ), where E(z, ξ) is the nonsemiclassical plane wave, and rewrite
the results below in terms of the parameter z, as in the abstract.

We will freely use the notions of semiclassical analysis as found for example in [62], and
reviewed in Section 3. We denote elements of the cotangent bundle T ∗M by (m, ν), where
m ∈M and ν ∈ T ∗mM . The semiclassical principal symbol of h2∆ is equal to p(m, ν) = |ν|2g,
where |ν|g is the length of ν ∈ T ∗mM with respect to the metric g. Therefore, the plane
wave Eh should be concentrated on the unit cotangent bundle (see [62, Theorem 5.3])

S∗M := {(m, ν) ∈ T ∗M | |ν|g = 1}.

If gt : T ∗M → T ∗M denotes the geodesic flow, then the Hamiltonian flow of p is etHp = g2t.

Semiclassical limits of Eh when the trapped set has measure zero. – In scattering theory
trajectories which never escape to infinity play a special role as they can be observed only
indirectly in asymptotics of plane waves. The incoming tail (resp. outgoing tail) Γ− ⊂ S∗M

(resp. Γ+ ⊂ S∗M ) of the flow is defined as follows: a point (m, ν) lies in Γ− (resp. Γ+) if and
only if the geodesic gt(m, ν) stays in some compact set for t ≥ 0 (resp. t ≤ 0). The trapped
set K := Γ+ ∩ Γ− is the set of points (m, ν) such that the geodesic gt(m, ν) lies entirely in
some compact subset of S∗M .

Our first result states that if µL(K) = 0, then plane waves Eh(λ, ξ) converge on average
to some measures supported on the closure of the set of trajectories converging to ξ in M :

T 1. – Let (M, g) be a Riemannian manifold satisfying the assumptions of Sec-
tion 4 and suppose that the trapped set has Liouville measure µL(K) = 0. For Lebesgue almost
every ξ ∈ ∂M , there exists a Radon measureµξ onS∗M such that for each compactly supported
h-semiclassical pseudodifferential operator A ∈ Ψ0(M), we have as h→ 0,

(1.5) h−1

∥∥∥∥〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) −
∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ,λ(∂M×[1,1+h])

→ 0,
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where σ(A) is the semiclassical principal symbol of A as defined in [62, Theorem 14.1]. The
measure µξ has support

(1.6) supp(µξ) ⊂ {(m, ν) ∈ S∗M | lim
t→+∞

gt(m, ν) = ξ},

and disintegrates the Liouville measure in the sense that there exists a smooth measure dξ on ∂M
such that, if µL is the Liouville measure generated by

√
p = |ν|g on S∗M , then

(1.7)
∫
∂M

µξ dξ = µL.

The limiting measure µξ is defined in Section 4.3. Implicit in (1.7) is the statement that for
any bounded Borel S ⊂ S∗M , we have µξ(S) ∈ L1

ξ(∂M). In Lemma A.1, we show that for
hyperbolic manifolds µξ is well defined for all ξ ∈ ∂M and it is likely that the same is true
when the curvature of g is negative near the trapped set, but we believe that this does not hold
in the general setting of Theorem 1.

In the case when WFh(A) ∩ Γ− = ∅ (in particular when g is non-trapping), we ac-
tually have a full expansion of 〈AEh, Eh〉 in powers of h, with remainders bounded
in L1

ξ,λ(∂M × [1, 1 + h])—see (5.14). It is likely that for K = ∅, this can be strengthened to
uniform convergence in ξ, λ, using nontrapping estimates on the resolvent.

The now standard argument of Colin de Verdière and Zelditch (see for example the proof
of [62, Theorem 15.5]) shows that there exists a family of Borel sets A(h) ⊂ ∂M × [1, 1 + h]

such that the ratio of the measure of A(h) to the measure of the whole ∂M × [1, 1 + h] goes
to 1 as h→ 0, and for each A ∈ Ψ0(M) as in Theorem 1 with σ(A) independent of h,

(1.8) 〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) →
∫
S∗M

σ(A) dµξ uniformly in (λ, ξ) ∈ A(h).

This statement can be viewed as an analogue of the quantum ergodicity fact (1.1), though as
explained above, it is produced by a different phenomenon.

Estimates for the remainder. – We next provide a quantitative version of Theorem 1, namely
an estimate of the left-hand side of (1.5). We define the set T (t) of geodesics trapped for
time t > 0 as follows: let K0 be a compact geodesically convex subset of M (in the sense
of (B.1)) containing a neighborhood of the trapped set K, then (see also Section 5.2)

(1.9) T (t) := {(m, ν) ∈ S∗M | m ∈ K0, π(gt(m, ν)) ∈ K0},

where π : T ∗M → M is the projection map. A quantity which will appear frequently with
some parameter Λ > 0 is the following interpolated measure

(1.10) r(h,Λ) := sup
0≤θ≤1

h1−θµL
(
T
(
θΛ−1| log h|

))
,

where h > 0 is small. This converges to 0 as h → 0 when µL(K) = 0 and it interpolates
between h (when θ = 0) and the Liouville measure of the set of geodesics that remain trapped
for time Λ−1| log h| (when θ = 1). When the measure µL( T (t)) decays exponentially in t,
as in (1.14), r(h,Λ) can be replaced by simply O(h) + µL( T (Λ−1| log h|)). The O(h) term
here is natural since one can add an operator in hΨ0(M) toA, which will change 〈AEh, Eh〉
by O(h), but will not change σ(A) (which is only defined invariantly modulo O(h)).
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