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GLOBAL EXISTENCE
FOR THE EULER-MAXWELL SYSTEM

 P GERMAIN  N MASMOUDI

A. – The Euler-Maxwell system describes the evolution of a plasma when the collisions
are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global
existence of small solutions to this system set in the whole three-dimensional space, by combining the
space-time resonance method (to obtain decay) and energy estimates (to control high frequencies).
The non-integrable decay of the solutions makes it necessary to examine resonances within the energy
estimate argument.

R. – Le système d’Euler-Maxwell décrit l’évolution d’un plasma quand les collisions sont
suffisamment importantes pour que chaque espèce soit dans un état d’équilibre hydrodynamique.
On prouve dans cet article l’existence globale de petites solutions à ce système, posé en dimension 3
d’espace, en combinant la méthode des résonances en espace-temps (pour obtenir la décroissance des
solutions) et des estimations d’énergie (pour contrôler la régularité des solutions). La décroissance non
intégrable des solutions impose de combiner étroitement ces deux arguments en examinant le rôle des
résonances au sein des estimations d’énergie.

1. Introduction

1.1. Plasma physics and Euler-Maxwell

There are different models to describe the state of a plasma depending on several para-
meters such as the Debey length, the plasma frequency, the collision frequencies between the
different species... Formal derivation of these models can be found in Plasma Physics text-
books (see for instance Bellan [1], Boyd and Sanderson [4], Dendy [8] and the paper [2]...).

Since the plasma consists of a very large number of interacting particles, it is appropriate
to adopt a statistical approach to describe it. In the kinetic description, it is only necessary
to evolve the distribution function fα(t, x, v) for each species in the system. The Vlasov
equation is used in this case with the Lorentz force term and a collision term. It is coupled
with the Maxwell equations for the electromagnetic fields.

If collisions are important, then each species is in a local equilibrium and the plasma is
treated as a fluid. More precisely it is treated as a mixture of two or more interacting fluids.
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This is the two-fluid model or the so-called Euler-Maxwell system. We refer to [22] for a
discussion about the possible derivation of this system from kinetic models, namely from the
two species Vlasov-Boltzmann-Maxwell system. We also refer to [24, 17, 23] for more about
hydrodynamic limits of the Boltzmann equation. Another level of approximation consists in
treating the plasma as a single fluid either by using the fact that the mass of the electrons is
much smaller than the mass of the ions or from the hydrodynamic limit which requires (in
a particular limit) that the two species evolve with a common velocity and temperature [22].
This is the model which we are going to consider in this paper.

1.2. The Euler-Maxwell equation

The Cauchy problem for the one-fluid version of the Euler-Maxwell system reads

(1.1)



ρ (∂tu+ u · ∇u) = −p
′(ρ)
m ∇ρ−

eρ
m

(
E + 1

cu×B
)

∂tρ+∇ · (ρu) = 0

∂tB + c∇× E = 0

∂tE − c∇×B = 4πeρu

∇ · E = 4πe(ρ̄− ρ)

∇ ·B = 0

(u, ρ,E,B)(t = 0) = (u0, ρ0, E0, B0).

The unknown functions are: ρ, the density of electrons; u, the average velocity of the elec-
trons; E, the electric field; B the magnetic field. The physical constants are: c, the speed of
light; e, the charge of the electron; m, the mass of the electron. Finally, ρ̄ is the uniform
density of ions, and the electron gas is supposed to be barotropic, the pressure being given
by p(ρ).

Let us first recall a few results related to (1.1). Global existence of weak solutions was
obtained for a related 1d model in [5] using compensated compactness. Also, several asymp-
totic problems (WKB asymptotics, incompressible limit, non-relativistic limit, quasi-neutral
limit...) were studied to derive simplified models starting from the Euler-Maxwell system
[33, 35, 34, 30]. We also refer to [27] where the incompressible Navier-Stokes system is
studied.

Going back to our system (1.1), we notice that the last two equations above can be
removed, as soon as they are satisfied at the initial time, which we assume from now on: they
are then conserved by the flow given by the first four.

1.3. Vicinity of the trivial equilibrium state

An obvious equilibrium state of the above system is (ρ, u,E,B) = (ρ̄, 0, 0, 0). In order
to study its stability, it is instructive to linearize the above system, and compute evolution
equations for its unknowns. It is convenient to introduce at this point the projections P ,
respectively Q onto divergence-free, respectively curl-free vector fields; they are given by

Qu :=

(
∇
∆

)
∇ · u and Pu := u−Qu.
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Split then accordingly u and E: u = Pu + Qu and E = PE + QE. The linearized system
can be written 

(
∂2
t − c2s∆ + ω2

p

)
QE

ρ− ρ̄
Qu

 = 0

(
∂2
t − c2∆ + ω2

p

)( PE

∇×B + 4πeρ̄
c Pu

)
= 0

∂t
(
B − cm

e ∇× u
)

= 0

where the speed of sound cs and the plasma frequency ωp are given by

cs =

√
p′(ρ̄)

m
and ωp =

√
4πe2ρ̄

m
.

Thus around the equilibrium, and at a linear level, some unknowns are governed by the
Klein-Gordon equation (with different speeds), whereas the quantity B − cm

e ∇ × u is
conserved. The Klein-Gordon equations entail decay, which is one of the keys of the global
stability result which we will prove; as for the quantityB− cme ∇×u, no decay is to be expected
a priori. We will therefore set it to zero, which, as it turns out, is conserved by the nonlinear
flow.

1.4. Adimensionalization and reductions

In the following, we set for simplicity the physical constants m, e, c, as well as ρ̄ to 1. We
also drop the 4π factors, since they are irrelevant. However c2s = p′(ρ̄) = p′(1) remains a
number less than 1. In order to simplify a little bit the estimates, we assume

p(ρ)
def
=

c2s
3
ρ3.

Finally, set

n
def
= ρ− 1.

The Cauchy problem becomes

(EM)



∂tu+ u · ∇u = −c2sρ∇ρ− E − u×B
∂tρ+∇ · (ρu) = 0

∂tB +∇× E = 0

∂tE −∇×B = ρu

∇ · E = −n
∇ ·B = 0

(u, n,E,B)(t = 0) = (u0, n0, E0, B0).

We shall furthermore assume that, initially,

(1.2) B = ∇× u.
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This condition is conserved by the flow of the above system: in order to see this, use the
identity u · ∇u = −u× (∇× u) +∇ |u|

2

2 to compute

∂t(B −∇× u) = ∇× (u · ∇u+ u×B)

= ∇×
(
−u× (∇× u) +∇|u|

2

2

)
−∇× (u×B)

= ∇× (u× (B −∇× u)) .

The linearized system reads now

(1.3)



(
∂2
t − c2s∆ + 1

)
Qu

n

QE

 = 0

(
∂2
t −∆ + 1

)
Pu

PE

B

 = 0.

1.5. Obtained results

Prior to stating our theorem, we need to define the operator A def
= 〈D〉
|D| (see Section 2 for

the precise definition of this operator).

T 1.1. – Assume that the resonance separation condition (4.1) holds; it is the case
generically in cs. Fix α0 > 0. Then there exist C0, ε0, N0 > 0 such that: if ε < ε0, N > N0

and ∥∥〈x〉1+α0(u0, An0, E0, AB0)
∥∥
HN

< ε,

then there exists a unique global solution of (EM) such that

sup
t

[
〈t〉−C0ε‖(u,An,E,AB)(t)‖HN +

√
〈t〉‖(u,An,E,AB)(t)‖3

]
. ε

(we refer to Section 2 for the definition of the norms appearing above). Furthermore, it scatters
as t goes to infinity in that there exists a solution (u`, n`, E`, B`) of the linear system (1.3)
corresponding to initial data in HN−2 such that

‖(u, n,E,B)(t)− (u`, n`, E`, B`)(t)‖HN−2 → 0 as t→∞.

R 1.2. – A few observations on the hypotheses on the initial data:

– What is meant by the condition (4.1) being generic? This condition amounts to requir-
ing that a finite number of real analytic functions of the speed of sound cs do not van-
ish. The actual system seems to be too complicated to be solved analytically, but a nu-
merical computation in [10] reveals that the condition (4.1) is met for the value cs = 1

5 .
Since non-zero analytic functions have separated zeros, the condition (4.1) holds except
at most for a discrete set of cs.

– The requirements on An0 and AB0 imply necessarily that
∫
n0 = 0 and

∫
B0 = 0.

In particular this is consistent with the electric neutrality. Notice that this electric
neutrality assumption could recently be removed for the related Euler-Poisson system,
see [12].
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