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ZERO-CYCLES ON VARIETIES OVER p-ADIC FIELDS
AND BRAUER GROUPS

 S SAITO  K SATO

A. – In this paper, we study the Brauer-Manin pairing of smooth proper varieties over a
p-adic field, and determine the p-adic part of the image of the induced cycle map. We also compute A0

of a potentially rational surface which splits over a wildly ramified extension.

R. – Dans cet article, nous étudions l’accouplement de Brauer-Manin des variétés propres
et lisses sur un corps p-adique, et déterminons la partie p-adique de l’image de l’application cycle in-
duite. Nous calculons aussi le A0 d’une surface potentiellement rationnelle déployée sur une extension
sauvagement ramifiée.

1. Introduction

Let k be a p-adic local field, and let X be a proper smooth geometrically integral variety
over k. Let CH0(X) be the Chow group of 0-cycles on X modulo rational equivalence. An
important tool to study CH0(X) is the natural pairing due to Manin [27]

CH0(X)× Br(X) −→ Q/Z,(M)

where Br(X) denotes the Grothendieck-Brauer group H2
ét(X,Gm). When dim(X) = 1,

using the Tate duality theorem for abelian varieties over p-adic local fields, Lichtenbaum [25]
proved that (M) is non-degenerate and induces an isomorphism

(L) A0(X) ∼−→ Hom(Br(X)/Br(k),Q/Z).

Here Br(X)/Br(k) denotes the cokernel of the natural map Br(k) → Br(X), and A0(X)

denotes the subgroup of CH0(X) generated by 0-cycles of degree 0. An interesting question
is as to whether the pairing (M) is non-degenerate when dim(X) ≥ 2. See [31] for surfaces
with non-zero left kernel. See [45] for varieties with trivial left kernel. In this paper, we are
concerned with the right kernel of (M) in the higher-dimensional case.
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1.1. – We assume that X has a regular model X which is proper flat of finite type over the
integer ring ok of k. It is easy to see that the pairing (M) induces homomorphisms

CH0(X) −→ Hom(Br(X)/Br(X ),Q/Z),(1.1.1)

A0(X) −→ Hom(Br(X)/Br(k) + Br(X ),Q/Z),(1.1.2)

where Br(X)/Br(k)+Br(X ) denotes the quotient of Br(X) by the image of Br(k)⊕Br(X ).
If dim(X) = 1, then Br(X ) is zero, and the map (1.1.2) is the same as (L) (cf. [9] 1.7 (c)). Our
main result is the following:

T 1.1.3. – Assume that the purity of Brauer groups holds for X (see Definition
2.1.1 below). Then:

(1) The right kernel of the pairing (M) is exactly Br(X ), that is, the map (1.1.1) has dense
image with respect to the natural pro-finite topology on the right hand side.

(2) The map (1.1.2) is surjective.

Restricted to the prime-to-p part, the assertion (1) is due to Colliot-Thélène and Saito [10].
The assertion (2) gives an affirmative answer to [6] Conjecture 1.4 (c), assuming the purity
of Brauer groups, which holds if dim(X ) ≤ 3 or if X has good or semistable reduction
(cf. Remark 2.1.2 below). Roughly speaking, Theorem 1.1.3 (1) asserts that if an element
ω ∈ Br(X) ramifies along the closed fiber of X , then there exists a closed point x ∈ X

for which the specialization of ω is non-zero in Br(x). We will in fact prove the following
stronger result on the ramification of Brauer groups:

T 1.1.4 (Corollary 3.2.3). – Let U be either X itself or its Henselization at a
closed point. Put U := U [p−1] and assume that the purity of Brauer groups holds for U . If
X is Henselian local, then assume further that all irreducible components of the divisor on U

defined by the radical of (p) are regular. Then the kernel of the map

ψx : Br(U) −→
∏
v∈U0

Q/Z , ω 7→ (invv(ω|v))v∈U0

agrees with Br(U ), where U0 denotes the set of closed points on U .

The prime-to-p part of Theorem 1.1.4 has been proved in [10]. We will prove the p-primary
part of this result using Kerz’s idèle class group [24]. Our method of the proof gives also an
alternative proof of the prime-to-part in [10].

1.2. – As an application of Theorem 1.1.3 (2), we give an explicit calculation of A0(X) for a
potentially rational suface X/k, a proper smooth geometrically connected surface X over k
such that X ⊗k k′ is rational for some finite extension k′/k. For such a surface X, the map
(1.1.2) has been known to be injective (see Proposition 4.1.2 below), and hence bijective by
Theorem 1.1.3 (2). On the other hand, for such a surface X, we have

Br(X)/Br(k) ' H1
Gal(Gk,NS(X)),

where NS(X) denotes the Néron-Severi group of X := X ⊗k k, and Gk denotes the
absolute Galois group of k. Thus knowing the Gk-module structure of NS(X), we can
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compute A0(X) by determining which element of Br(X) are unramified along the closed
fiber of X . For example, consider a cubic surface for a ∈ k×

X : T 3
0 + T 3

1 + T 3
2 + aT 3

3 = 0 in P3
k = Proj(k[T0, T1, T2, T3]).

If a is a cube in k, then X is isomorphic to the blow-up of P2
k at six k-valued points in the

general position (Shafarevich) and we have A0(X) = 0. We will prove the following result,
which is an extention of results in [10] Example 2.8.

T 1.2.1 (Theorem 4.1.1). – Assume that ordk(a) ≡ 1 mod (3) and that k con-
tains a primitive cubic root of unity. Then we have

A0(X) ' (Z/3)2.

In his paper [11], Dalawat provided a method to compute A0(X) for a potentially rational
surfaceX, which works under the assumption that the action ofGk on NS(X) is unramified.
Theorem 1.1.3 provides a new method to compute A0(X), which does not require Dalawat’s
assumption. Note that pmay be 3 in Theorem 1.2.1, so that the action ofGk on NS(X) may
ramify even wildly.

1.3. – Let ok be as before, and let X be a regular scheme which is proper flat of finite type
over ok. Assume that X has good or semistable reduction over ok. Let d be the absolute
dimension of X , and let r be a positive integer. In [35], we proved that the cycle class map

%d−1
m : CHd−1(X )/m −→ H2d−2

ét (X , µ⊗d−1
m )

is bijective for any positive integer m prime to p. Here µm denotes the étale sheaf of m-th
roots of unity. As a new tool to study CHd−1(X ), we introduce the p-adic cycle class map
defined in [37] Corollary 6.1.4:

%d−1
pr : CHd−1(X )/pr −→ H2d−2

ét (X ,Tr(d− 1)).

Here Tr(n) = Tr(n)X denotes the étale Tate twist with Z/prZ-coefficients [37] (see also
[38] § 7), which is an object ofDb(X ,Z/prZ), the derived category of bounded complexes of
étale Z/prZ-sheaves on X . This objectTr(n) plays the role of µ⊗nm , and we expect thatTr(n)

agrees with Z(n)ét⊗LZ/prZ, where Z(n)ét denotes the conjectural étale motivic complex of
Beilinson-Lichtenbaum ([2], [26], [37] Conjecture 1.4.1 (1)). Concerning the map %d−1

pr , we
will prove the following result:

T 1.3.1. – The cycle class map %d−1
pr is surjective.

We have nothing to say about the injectivity of %d−1
pr in this paper (compare with [44]). A

key to the proof of Theorem 1.3.1 is the non-degeneracy of a canonical pairing of finite
Z/prZ-modules

H2d−2
ét (X ,Tr(d− 1))×H3

Y,ét(X ,Tr(1)) −→ Z/prZ

proved in [37] Theorem 10.1.1. We explain an outline of the proof of Theorem 1.3.1. Let Y ,
U , Ax be as in Theorem 1.1.4. Let X0 and Y0 be the sets of all closed points on X and Y ,
respectively, and let sp : X0 → Y0 be the specialization map of points. By the duality
mentioned above, there is an isomorphism of finite groups

H2d−2
ét (X ,Tr(d− 1)) ∼−→ H3

Y,ét(X ,Tr(1))∗,
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where we putM∗ := Hom(M,Q/Z) for abelian groupM . We will construct an injective map

θpr : H3
Y,ét(X ,Tr(1)) �

� //
∏
x∈U0

prBr(Ax[p−1])

whose dual fits into a commutative diagram

CHd−1(X )/pr
%d−1
`r // H2d−2

ét (X ,Tr(d− 1)) //∼ H3
Y,ét(X ,Tr(1))∗

⊕
x∈U0

⊕
v∈Spec(Ax[p−1])0

Z/prZ
(ψpr )∗

// //

OO

⊕
x∈U0

(
prBr(Ax[p−1])

)∗
.

(θpr )∗

OOOO

Here ψpr denotes the direct product of the pr-torsion part of the map ψx in Theorem 1.1.4
for all x ∈ U0, which is injective by Theorem 1.1.4 and its dual (ψpr )

∗ is surjective. Therefore
Theorem 1.3.1 will follow from this commutative diagram and the surjectivity of (θpr )

∗

and (ψpr )
∗ (see § 6 for details).

1.4. – This paper is organized as follows. In § 3, we will prove Theorem 1.1.4 in a stronger
form. In § 4, we compute A0 of cubic surfaces to prove Theorem 1.2.1. In § 5 and § 6, we will
prove Theorem 1.1.3 and Theorem 1.3.1, respectively.
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Notation

1.5. – For an abelian groupM and a positive integer n, nM andM/n denote the kernel and

the cokernel of the map M ×n−→ M , respectively. For a field k, k denotes a fixed separable
closure, and Gk denotes the absolute Galois group Gal(k/k). For a discrete Gk-module M ,
H∗(k,M) denotes the Galois cohomology groups H∗Gal(Gk,M), which are the same as the
étale cohomology groups of Spec(k) with coefficients in the étale sheaf associated with M .

1.6. – Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology. For a commutative ring R with unity and a sheaf F on Spec(R)ét, we often write
H∗(R,F ) for H∗(Spec(R),F ).
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