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A THEOREM OF PALEY-WIENER TYPE
FOR SCHRÖDINGER EVOLUTIONS

 C E. KENIG, G PONCE  L VEGA

A. – We prove unique continuation principles for solutions of evolution Schrödinger
equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener
type for the Fourier transform. Our results extend to a large class of semi-linear Schrödinger equations.

R. – On prouve des principes de prolongement unique pour les solutions d’équations d’évo-
lution de Schrödinger avec potentiels dépendant du temps. Ceux-ci correspondent à des principes d’in-
certitude de type Paley-Wiener pour la transformée de Fourier. Nos résultats se généralisent à une large
classe d’équations de Schrödinger semi-linéaires.

1. Introduction

In this paper we study unique continuation properties of solutions of Schrödinger equa-
tions of the form

(1.1) ∂tu = i(4u+ V (x, t)u), (x, t) ∈ Rn × [0, T ], T > 0.

The goal is to obtain sufficient conditions on the behavior of the solution u at two different
times and on the potential V which guarantee that u ≡ 0 in Rn × [0, T ]. Under appropriate
assumptions this result will extend to the difference v = u1 − u2 of two solutions u1, u2 of
semi-linear Schrödinger equation

(1.2) ∂tu = i(4u+ F (u, u)),

from which one can conclude that u1 ≡ u2.

Defining the Fourier transform of a function f as

f̂(ξ) = (2π)−n/2
∫
Rn
e−iξ·xf(x)dx,
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one has

(1.3)

u(x, t) = eit∆u0(x) =

∫
Rn

ei|x−y|
2/4t

(4πit)n/2
u0(y) dy

=
ei|x|

2/4t

(4πit)n/2

∫
Rn
e−2ix·y/4tei|y|

2/4tu0(y) dy

=
ei|x|

2/4t

(2it)n/2
̂(ei|·|2/4tu0)

( x
2t

)
,

where eit∆u0(x) denotes the free solution of the Schrödinger equation with data u0

∂tu = i4u, u(x, 0) = u0(x), (x, t) ∈ Rn × R.

The identity (1.3) tells us that this kind of results for the free solution of the Schrödinger
equation are closely related to uncertainty principles for the Fourier transform. In this
regard, one has the well known result of G. H. Hardy [9]:

If f(x) = O(e−x
2/β2

), f̂(ξ) = O(e−4 ξ2/α2

) and αβ < 4, then f ≡ 0,

and if αβ = 4, then f(x) = c e−x
2/β2

.

Its extension to higher dimensions n ≥ 2 was obtained in [15]. The following generalization
in terms of the L2-norm was established in [3]:

If e
|x|2

β2 f(x), e
4|ξ|2

α2 f̂(ξ) ∈ L2(Rn), and αβ ≤ 4, then f ≡ 0.

In terms of the free solution of the Schrödinger equation the L2-version of Hardy Uncer-
tainty Principle says :

(1.4) If e
|x|2

β2 u0(x), e
|x|2

α2 eit∆ u0(x) ∈ L2(Rn), and αβ ≤ 4t, then u0 ≡ 0.

In [6] the following result was proven:

T ([6]). – Given any solution u ∈ C([0, T ] : L2(Rn)) of

(1.5) ∂tu = i (4u+ V (x, t)u) , (x, t) ∈ Rn × [0, T ],

with V ∈ L∞(Rn × [0, T ]),

(1.6) lim
ρ→+∞

‖V ‖L1([0,T ]:L∞(Rn\Bρ)) = 0.

and

e
|x|2

β2 u0, e
|x|2

α2 eiT∆u0 ∈ L2(Rn),

with αβ < 4T , then u0 ≡ 0.

Notice that the above Theorem recovers the L2-version of the Hardy Uncertainty Princi-
ple (1.4) for solutions of the IVP (1.5), except for the limiting case αβ = 4T for which the
corresponding result was proven to fail, see [6]. For further results in this direction concern-
ing other uncertainty principles we refer to [8] and references therein.
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Some previous results concerning uniqueness properties of solutions of the Schrödinger
equation were not directly motivated by the Formula (1.3).

For solutions u = u(x, t) of the 1-D cubic Schrödinger equation

(1.7) ∂tu = i(∂2
xu± |u|2u),

B. Y. Zhang [17] showed :

If u(x, t) = 0 for (x, t) ∈ (−∞, a)× {0, 1} (or (x, t) ∈ (a,∞)× {0, 1}) for some a ∈ R,
then u ≡ 0.

The proof is based on the inverse scattering method, which uses the fact that the equation
in (1.7) is a completely integrable model.

In [13], under general assumptions on F in (1.2), it was proven that :

If u1, u2 ∈ C([0, 1] : Hs(Rn)), with s > max{n/2; 2} are solutions of the Equation (1.2)
with F as in (1.2) such that

u1(x, t) = u2(x, t), (x, t) ∈ Γcx0
× {0, 1},

where Γcx0
denotes the complement of a cone Γx0

with vertex x0 ∈ Rn and opening < 1800,
then u1 ≡ u2.

For further results in this direction, see [12, 13], [10, 11] and references therein. Note that
in [8] a unified approach was given to both kinds of results, using Lemma 3 and Corollary 1
below.

Returning to the uncertainty principle for the Fourier transform one has :

If f ∈ L1(Rn) is non-zero and has compact support, then f̂ cannot satisfy a condition of
the type f̂(y) = O(e−ε|y|) for any ε > 0.

This is due to the fact that f̂(y) = O(e−ε|y|) implies that f has an analytic extension to
the strip {z ∈ Cn : |Im(z)| < ε}.

In this regard the Paley-Wiener Theorem [14] gives a characterization of a function or dis-
tribution with compact support in term of the analyticity properties of its Fourier transform.

Our main result in this work is the following:

T 1. – Let u ∈ C([0, 1] : L2(Rn)) be a strong solution of the equation

(1.8) ∂tu = i(∆u+ V (x, t)u), (x, t) ∈ Rn × [0, 1].

Assume that

(1.9) sup
0≤t≤1

∫
Rn
|u(x, t)|2dx ≤ A1,

(1.10)
∫
Rn

e2a1|x1| |u(x, 0)|2 dx = A2 <∞, for some a1 > 0,

(1.11) suppu(·, 1) ⊂ {x ∈ Rn : x1 ≤ a2}, for some a2 <∞,

with

(1.12) V ∈ L∞(Rn × [0, 1]), ‖V ‖L∞(Rn×[0,1]) = M0,
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and

(1.13) lim
ρ→+∞

‖V ‖L1([0,1]:L∞(Rn\Bρ)) = 0.

Then u ≡ 0.

R. – (a) Note that in order to prove Theorem 1, by translation in x1, we can
choose who a2 is. We will show that there existsm > 0 (small) with the property that if (1.9),
(1.10), (1.12), (1.13) hold and (1.11) holds with a2 = m, then

u(x, 1) = 0 for x ∈ Rn such that m/2 < x1 ≤ m.

This clearly yields the desired result. Without loss of generality we will assume m < 1.

(b) By rescaling it is clear that the result in Theorem 1 applies to any time interval [0, T ].

(c) We recall that in Theorem 1 there are no hypotheses on the size of the potential V in
the given class or on its regularity.

(d) A weaker version of Theorem 1 was announced in [8].

As a direct consequence of Theorem 1 we get the following result regarding the uniqueness
of solutions for non-linear equations of the form (1.2).

T 2. – Given

u1, u2 ∈ C([0, T ] : Hk(Rn)), 0 < T ≤ ∞,

strong solutions of (1.2) with k ∈ Z+, k > n/2, F : C2 → C, F ∈ Ck and F (0) = ∂uF (0) =

∂ūF (0) = 0 such that

(1.14) supp (u1(·, 0)− u2(·, 0)) ⊂ {x ∈ Rn : x1 ≤ a2}, a2 <∞.

If for some t ∈ (0, T ) and for some ε > 0

(1.15) u1(·, t)− u2(·, t) ∈ L2(eε |x1| dx),

then u1 ≡ u2.

R. – (a) In particular, by taking u2 ≡ 0, Theorem 2 shows that if u1(·, 0) has
compact support, then for any t ∈ (0, T ) u1(·, t) cannot decay exponentially.

(b) In the case F (u, u) = |u|α−1u, with α > n/2 if α is not an odd integer, we have that if
ϕ is the unique non-negative, radially symmetric solution of

−∆ϕ+ ω ϕ = |ϕ|α−1ϕ, ω > 0,

then

(1.16) u1(x, t) = eiωtϕ(x)

is a solution (“standing wave”) of

(1.17) ∂tu = i(∆u+ |u|α−1u).

It was established in [16, 1] that there exist constants c0, c1 > 0 such that

(1.18) ϕ(x) ≤ c0 e−c1|x|.
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