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SINGULAR CURVES AND THE ÉTALE
BRAUER-MANIN OBSTRUCTION FOR SURFACES

 Y HARPAZ  A N. SKOROBOGATOV

A. – We give an elementary construction of a smooth and projective surface over an
arbitrary number field k that is a counterexample to the Hasse principle but has infinite étale Brauer-
Manin set. Our surface has a surjective morphism to a curve with exactly one k-point such that the
unique k-fibre is geometrically a union of projective lines with an adelic point and the trivial Brauer
group, but no k-point.

R. – Nous présentons une construction élémentaire d’une surface lisse et projective sur
un corps de nombres quelconque k qui constitue un contre-exemple au principe de Hasse et possède
l’ensemble de Brauer-Manin infini. La surface est munie d’un morphisme surjectif vers une courbe avec
un seul k-point tel que l’unique fibre rationnelle, qui géométriquement est l’union de droites projectives,
a un point adélique et le groupe de Brauer trivial, mais pas de k-points.

Introduction

For a variety X over a number field k one can study the set X(k) of k-points of X by
embedding it into the topological space of adelic pointsX(Ak). In 1970 Manin [10] suggested
to use the pairing

X(Ak)× Br(X)→ Q/Z
provided by local class field theory. The left kernel of this pairingX(Ak)Br is a closed subset
of X(Ak), and the reciprocity law of global class field theory implies that X(k) is contained
in X(Ak)Br. The first example of a smooth and projective variety X such that X(k) = ∅
but X(Ak)Br 6= ∅ was constructed in [18] (see [1] for a similar example; an earlier example
conditional on the Bombieri-Lang conjecture was found in [14]). Later, Harari [6] found
many varieties X such that X(k) is not dense in X(Ak)Br. For all of these examples except
for that of [14] the failure of the Hasse principle or weak approximation can be explained by
the étale Brauer-Manin obstruction (introduced in [18], see also [13]): the closure of X(k)

in X(Ak) is contained in the étale Brauer-Manin set X(Ak)ét,Br ⊂ X(Ak)Br which in these
cases is smaller than X(Ak)Br. Recently Poonen [13] constructed threefolds (fibred into
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rational surfaces over a curve of genus at least 1) such that X(k) = ∅ but X(Ak)ét,Br 6= ∅.
It is known that X(Ak)ét,Br coincides with the set of adelic points surviving the descent
obstructions defined by torsors of arbitrary linear algebraic groups (as proved in [3, 17] using
[7, 19]).

In 1997 Scharaschkin and the second author independently asked the question whether
X(k) = ∅ if and only if X(Ak)Br = ∅ when X is a smooth and projective curve. They also
asked if the embedding ofX(k) intoX(Ak)Br defines a bijection between the closure ofX(k)

inX(Ak) and the set of connected components ofX(Ak)Br. Despite some evidence for these
conjectures, it may be prudent to consider also their weaker analogues with X(Ak)ét,Br in
place of X(Ak)Br.

In this note we give an elementary construction of a smooth and projective surfaceX over
an arbitrary number field k that is a counterexample to the Hasse principle and has infinite
étale Brauer-Manin set (Section 3). Even simpler is our counterexample to weak approxima-
tion (Section 2). This is a smooth and projective surfaceX over k with a unique k-point and
infinite étale Brauer-Manin setX(Ak)ét,Br; moreover, infinitely many elements ofX(Ak)ét,Br

have all their local components in the Zariski open set X \X(k). Following Poonen we con-
sider families of curves parameterized by a curve with exactly one k-point. The new idea is to
make the unique k-fibre a singular curve, geometrically a union of projective lines, and then
use properties of rational and adelic points on singular curves.

The structure of the Picard group of a singular projective curve is well known, see [2, Sec-
tion 9.2] or [9, Section 7.5]. In Section 1 we give a formula for the Brauer group of a reduced
projective curve, see Theorem 1.3. A singular curve over k can have surprising properties
that no smooth curve can ever have: it can contain infinitely many adelic points, only finitely
many k-points or none at all, and yet have the trivial Brauer group. See Corollary 3.2 for a
singular, geometrically connected, projective curve over an arbitrary number field k that is a
counterexample to the Hasse principle not explained by the Brauer-Manin obstruction. In [8]
the first author proves that every counterexample to the Hasse principle on a curve which
geometrically is a union of projective lines, can be explained by finite descent (and hence by
the étale Brauer-Manin obstruction). Here we note that geometrically connected and simply
connected projective curves over number fields satisfy the Hasse principle, a statement that
does not generalize to higher dimension, see Proposition 2.1 and Remark 2.2.

This paper was written while the authors were guests of the Centre interfacultaire
Bernoulli of the École polytechnique fédérale de Lausanne.

1. The Brauer group of singular curves

Let k be a field of characteristic 0 with an algebraic closure k̄ and the Galois group
Γk = Gal(k̄/k). For a schemeX over kwe writeX = X ×k k̄. All cohomology groups in this
paper are Galois or étale cohomology groups. Let C be a reduced, geometrically connected,
projective curve over k. We define the normalization C̃ as the disjoint union of normalizations
of the irreducible components of C. The normalization morphism ν : C̃ → C factors as

C̃
ν′−→ C ′

ν′′−→ C,
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where C ′ is a maximal intermediate curve universally homeomorphic to C, see [2, Sec-
tion 9.2, p. 247] or [9, Section 7.5, p. 308]. The curve C ′ is obtained from C̃ by identifying
the points which have the same image in C. In particular, there is a canonical bijection
ν′′ : C ′(K)−̃→C(K) for any field extension K/k. The curve C ′ has mildest possible sin-
gularities: for each singular point s ∈ C ′(k̄) the branches of C

′
through s intersect like

n coordinate axes at 0 ∈ Ank .
Let us define the following reduced 0-dimensional schemes:

(1.1) Λ = Spec(H0(C̃, OC̃)), Π = Csing, Ψ =
(
Π×C C̃

)
red
.

Here Λ is the k-scheme of geometric irreducible components of C (or the geometric con-
nected components of C̃); it is the disjoint union of closed points λ = Spec(k(λ)) such that
k(λ) is the algebraic closure of k in the function field of the corresponding irreducible com-
ponent k(Cλ) = k(C̃λ). Next, Π is the union of singular points of C, and Ψ is the union of
fibres of ν : C̃ → C over the singular points ofC with their reduced subscheme structure. The
morphism ν′′ induces an isomorphism

(
Π×C C ′

)
red
−̃→Π, so we can identify these schemes.

Let i : Π → C, i′ : Π → C and j : Ψ → C̃ be the natural closed immersions. We have a
commutative diagram

C̃
ν′ // C ′

ν′′ // C

Ψ

j

OO

ν′ // Π.

i′

OO

i

??

The restriction of ν to the smooth locus of C induces isomorphisms

C̃ \ j(Ψ)−̃→C ′ \ i′(Π)−̃→C \ i(Π).

An algebraic group over Π is a product G =
∏
π iπ∗(Gπ), where π ranges over the irre-

ducible components of Π, iπ : Spec(k(π))→ Π is the natural closed immersion, and Gπ is
an algebraic group over the field k(π).

P 1.1. – (i) The canonical mapsGm,C′ → ν′∗Gm,C̃ andGm,C′ → i′∗Gm,Π give
rise to the exact sequence of étale sheaves on C ′

(1.2) 0→ Gm,C′ → ν′∗Gm,C̃ ⊕ i
′
∗Gm,Π → i′∗ν

′
∗Gm,Ψ → 0,

where ν′∗Gm,Ψ is an algebraic torus over Π.
(ii) The canonical map Gm,C → ν′′∗Gm,C′ gives rise to the exact sequence of étale sheaves

on C:

(1.3) 0→ Gm,C → ν′′∗Gm,C′ → i∗ U → 0,

where U is a commutative unipotent group over Π.

Proof. – This is essentially well known, see [2], the proofs of Propositions 9.2.9 and 9.2.10,
or [9, Lemma 7.5.12]. By [11, Thm. II.2.15 (b), (c)] it is enough to check the exactness of (1.2)
at each geometric point x̄ ofC ′. If x̄ /∈ i′(Π), this is obvious since locally at x̄ the morphism ν′

is an isomorphism, and the stalks (i′∗Gm,Π)x̄ and (i′∗ν
′
∗Gm,Ψ)x̄ are zero. Now let x̄ ∈ i′(Π),

and let Ox̄ be the strict Henselisation of the local ring of x̄ in C ′. Each geometric point ȳ
of C̃ belongs to exactly one geometric connected component of C̃, and we denote by Oȳ
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the strict Henselisation of the local ring of ȳ in its geometric connected component. By the
construction of C ′ we have an exact sequence

0 −→ Ox̄ −→ k(x̄)×
∏

ν′(ȳ)=x̄

Oȳ −→
∏

ν′(ȳ)=x̄

k(ȳ) −→ 0,

where Oȳ → k(ȳ) is the reduction modulo the maximal ideal of Oȳ, and k(x̄)→ k(ȳ) is the
multiplication by −1. We obtain an exact sequence of abelian groups

1 −→ O∗x̄ −→ k(x̄)∗ ×
∏

ν′(ȳ)=x̄

O∗ȳ −→
∏

ν′(ȳ)=x̄

k(ȳ)∗ −→ 1.

Using [11, Cor. II.3.5 (a), (c)] one sees that this is the sequence of stalks of (1.2) at x̄, so that
(i) is proved.

To prove (ii) consider the exact sequence

0→ Gm,C → ν′′∗Gm,C′ → ν′′∗Gm,C′/Gm,C → 0.

Since ν′′ is an isomorphism away from i(Π), the restriction of the sheaf ν′′∗Gm,C′/Gm,C
to C \ i(Π) is zero, hence ν′′∗Gm,C′/Gm,C = i∗ U for some sheaf U on Π. To see that
U is a unipotent group scheme it is enough to check the stalks at geometric points.
Let x̄ be a geometric point of i(Π), and let ȳ be the unique geometric point of C ′ such
that ν′′(ȳ) = x̄. Let Ox̄ and Oȳ be the corresponding strictly Henselian local rings. The
stalk (ν′′∗Gm,C′/Gm,C)x̄ is O∗ȳ/ O∗x̄, and according to [9, Lemma 7.5.12 (c)], this is a unipo-
tent group over the field k(x̄). This finishes the proof.

R 1.2. – The first part of Proposition 1.1 has an alternative proof which is easier
to generalize to higher dimension. Let X be a projective k-variety with normalization mor-
phism ν : X̃ → X. Assume that X̃, Xsing and X̃crit are smooth, where Xsing is the singular
locus of X and X̃crit = ν−1(Xsing) ⊆ X̃ is the critical locus of ν. (This assumption is auto-
matically satisfied when X is a curve.) The analogue of C ′ is the K-variety X ′ given by the
pushout in the square

X̃crit
j //

g

��

X̃

ν′

��
Xsing

i′ // X ′.

This pushout exists in the category of K-varieties since i′ is a closed embedding and g is an
affine morphism of smooth projective varieties (see [4, Thm. 5.4]). One then proves that the
sequence of sheaves

0 −→ Gm,X′ −→ ν′∗Gm,X̃ ⊕ i
′
∗Gm,Xsing

−→ ν′∗j∗Gm,X̃crit
−→ 0

is exact, as follows. From the definition of X ′ we obtain that the square

OX′ //

��

ν′∗ OX̃

��
i′∗ OXsing

// ν′∗j∗ OX̃crit
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