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LEFSCHETZ FOR LOCAL PICARD GROUPS

 B BHATT  A J DE JONG

A. – We prove a strengthening of the Grothendieck-Lefschetz hyperplane theorem for
local Picard groups conjectured by Kollár. Our approach, which relies on acyclicity results for absolute
integral closures, also leads to a restriction theorem for higher rank bundles on projective varieties in
positive characteristic.

R. – Nous prouvons un renforcement du théorème de l’hyperplan de Grothendieck-
Lefschetz pour les groupes locaux de Picard conjecturés par Kollár. Notre approche, qui s’appuie sur
des résultats en fermetures absolues, conduit également à un théorème de restriction pour les faisceaux
de rang supérieur sur les variétés projectives en caractéristique positive.

A classical theorem of Lefschetz asserts that non-trivial line bundles on a smooth pro-
jective variety of dimension ≥ 3 remain non-trivial upon restriction to an ample divisor,
and plays a fundamental role in understanding the topology of algebraic varieties. In [6],
Grothendieck recast this result in more general terms using the machinery of formal geom-
etry and deformation theory, and also stated a local version. With a view towards moduli
of higher dimensional varieties, especially the deformation theory of log canonical singular-
ities, Kollár recently conjectured [15] that Grothendieck’s local formulation remains true un-
der weaker hypotheses than those imposed in [6]. Our goal in this paper is to prove Kollár’s
conjecture for rings containing a field.

Statement of results

Let (A,m) be an excellent normal local ring containing a field. Fix some 0 6= f ∈ m.
Let V = Spec(A)− {m}, and V0 = Spec(A/f)− {m}. The following result is the key
theorem in this paper; it solves [15, Problem 1.3] completely, and [15, Problem 1.2] in
characteristic 0:

T 0.1. – Assume dim(A) ≥ 4. The restriction map Pic(V )→ Pic(V0) is:

1. injective if depthm(A/f) ≥ 2 and A has characteristic 0;
2. injective up to p∞-torsion if A has characteristic p > 0.
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This result is sharp: surjectivity fails in general, while injectivity fails in general if
dim(A) ≤ 3, in characteristic 0 if depthm(A/f) < 2, and in characteristic p if one in-
cludes p-torsion. Theorem 0.1 leads to a fibral criterion for a Weil divisor to be Cartier
in a family, see Theorem 1.30. A stronger analogue of Theorem 0.1, including the mixed
characteristic case, is due to Grothendieck [6, Expose XI] under the stronger condition
depthm(A/f) ≥ 3; complex analytic variants of Grothendieck’s theorem are proven in [7],
while topological analogues are discussed in [9]. Without this depth constraint, a previously
known case of Theorem 0.1 was when A has log canonical singularities in characteristic 0,
and {m} ⊂ Spec(A) is not an lc center (see [15, Theorem 19]).

Our approach to Theorem 0.1 relies on formal geometry over absolute integral closures [2,
11], and applies to higher rank bundles as well as projective varieties. This technique then
leads to a short proof of the following result:

T 0.2. – Let X be a normal projective variety of dimension d ≥ 3 over an alge-
braically closed field of characteristic p > 0. If a vector bundle E on X is trivial over an ample
divisor, then (FrobeX)∗E ' O⊕rX for e� 0.

The numerical version of Theorem 0.2 for line bundles is due to Kleiman [13, Corollary 2,
page 305]. The non-numerical version of the rank 1 case, with stronger assumptions on the
singularities, is studied in [8]. This result may also be deduced from the boundedness [16] of
semistable sheaves. We do not know the correct characteristic 0 analogue of this result.

An outline of the proof

Both theorems are similar in spirit, so we only discuss Theorem 0.1 here. We first prove the
characteristic p result, and then deduce the characteristic 0 one by reduction modulo p and
an approximation argument; the reduction necessitates the (unavoidable) depth assumption
in characteristic 0. The characteristic p proof follows Grothendieck’s strategy of decoupling
the problem into two pieces: one in formal f -adic geometry, and the other an algebraiza-
tion question. Our main new idea is to replace (thanks entirely to the Hochster-Huneke van-
ishing theorem [11]) our ring A with a very large extension A with better depth properties;
Grothendieck’s deformation-theoretic approach then immediately solves the formal geome-
try problem over A. Next, we algebraize the solution over A by algebraically approximating
formal sections of line bundles; the key here is to identify the cohomology of the formal com-
pletion of a scheme as the derived completion of the cohomology of the original scheme, i.e.,
a weak analogue of the formal functions theorem devoid of the usual finiteness constraints.
Finally, we descend from A to A; this step is trivial in our context, but witnesses the torsion
in the kernel.

Acknowledgements

We thank János Kollár for many helpful discussions and email exchanges concerning
Theorem 0.1, Adrian Langer for sharing with us the alternative proof of Theorem 0.2 after a
first version of this paper was posted, and Brian Lehmann for bringing to our attention the
question answered in Theorem 2.9.

4 e SÉRIE – TOME 47 – 2014 – No 4



LEFSCHETZ FOR LOCAL PICARD GROUPS 835

1. Local Picard groups

The goal of this section is to prove Theorem 0.1. In §1.1, we study formal geometry
along a divisor on a (punctured) local scheme abstractly, and establish certain criteria for
restriction map on Picard groups to be injective. These are applied in §1.2 to prove the
characteristic p part of Theorem 0.1. Using the principle of “reduction modulo p” and a
standard approximation argument (sketched in §1.4), we prove the characteristic 0 part of
Theorem 0.1 in §1.3. The afore-mentioned fibral criterion is recorded in §1.5. Finally, in §1.6,
we give examples illustrating the necessity of the assumptions in Theorem 0.1.

1.1. Formal geometry over a punctured local scheme

We establish some notation that will be used in this section.

N 1.1. – Let (A,m) be a local ring, and fix a regular element f ∈ m. Let
X = Spec(A), V = Spec(A)− {m}. For an X-scheme Y , write Yn for the reduction of Y
modulo fn+1, and Ŷ for the formal completion(1) of Y along Y0. Let Vect(Y ) be the category
of vector bundles (i.e., finite rank locally free sheaves) on Y , and write Pic(Y ) and Pic(Y )

for the set and groupoid of line bundles respectively. Set Pic(Ŷ ) := lim Pic(Yn) (where the
limit is in the sense of groupoids), and Pic(Ŷ ) := π0(Pic(Ŷ )). For any A-module M with
associated quasi-coherent sheaf M̃ on Spec(A), we defineHi

m(M) as cohomology supported
along {m} ⊂ X of M̃ , i.e., as the ith cohomology of the complex RΓm(M) defined as the
homotopy-kernel of the map RΓ(Spec(A), M̃)→ RΓ(V, M̃).

We will use formal schemes associated to certain non-Noetherian X-schemes later in this
paper. Rather than developing the general theory of such schemes, we simply define the
concept that will be most relevant: cohomology.

D 1.2. – Fix an X-scheme Y . For F ∈ D( OY ), set F̂ := R lim(F ⊗LOY
OYn

);

we view F̂ as an OŶ := limn OYn
-complex on |Ŷ | := Y0, so RΓ(Ŷ , F̂ ) := RΓ(Y0, F̂ ) '

R lim RΓ(Y0, F ⊗LOY
OYn

).

The following two examples help explain the meaning of this definition:

E 1.3. – If F is a quasicoherent OX -module associated to anA-moduleM , then
RΓ(X̂, F̂ ) ' R lim(M ⊗LAA/(fn)). In particular, ifM isA-flat, then RΓ(X̂, F̂ ) is the f -adic
completion of M in the usual sense. Note that if M is not A-flat, then RΓ(X̂, F̂ ) could have
cohomology in negative degrees.

E 1.4. – Fix a quasicoherent flat OV -module F , assumed to be obtained
from an A-module M via localization. Then RΓ(V̂ , F̂ ) is computed as follows. Fix
an ideal (g1, . . . , gr) ⊂ A with V (g1, . . . , gr) = {m} set-theoretically (assumed to exist).

Let C(M ; g1, . . . , gr) :=
⊗r

i=1

(
M

1→Mgi

)
be the displayed Cech complex, and let K(M)

be the cone of the natural map C(M ; g1, . . . , gr)→M . Then the (termwise) f -adic com-
pletion of K computes RΓ(V̂ , F̂ ). To see this, observe first that K(M)/fnK(M) computes

(1) The formal scheme Ŷ is used as a purely linguistic device to talk about compatible systems of sheaves on each Yn,
and not in a deeper manner.
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RΓ(Vn, F ⊗LOV
OVn

). It follows that the term-wise f -adic completion of K computes

R lim RΓ(Vn, F ⊗ OV
OVn

) ' RΓ(V̂ , F̂ ).

The derived completion functor K 7→ R lim(K ⊗LA A/fn) already appears implicitly in
the above definition. To access its values, recall the following definition:

D 1.5. – Given an A-module M , we define the f -adic Tate module as
Tf (M) := limM [fn] with transition maps given by powers of f ; note that Tf (M) = 0

if fN ·M = 0 for some N > 0.

The Tate module leads to the second of the following two descriptions of the cohomology
of a formal completion:

L 1.6. – LetY be anX-scheme such that OY has bounded f∞-torsion. For F ∈ D( OY ),
there are exact sequences

1→ R1 limHi−1(Yn, F ⊗LOY
OYn)→ Hi(Ŷ , F̂ )→ limHi(Y, F ⊗LOY

OYn)→ 1,

and

1→ limHi(Y, F )/fn → Hi(Ŷ , F̂ )→ Tf (Hi+1(Y, F ))→ 1.

Proof. – We first give a proof when OY has no f -torsion (which will be the only relevant
case in the sequel). The first sequence is then obtained from the formula

RΓ(Ŷ , F̂ ) ' R lim RΓ(Y, F ⊗LOY
OYn

)

and Milnor’s exact sequence for R lim (see [18]). Applying the projection formula (since
A/fn is A-perfect) to the above gives

RΓ(Ŷ , F̂ ) ' R lim
(
RΓ(Y, F )⊗LA A/fn).

The second sequence is now obtained by applying the derived f -adic completion functor
R lim(−⊗LA A/fn) to the canonical filtration on RΓ(Y, F ), which proves the claim. In

general, the boundedness of f -torsion in OY shows that the map { OY
fn

→ OY } → { OYn
} of

projective systems is a (strict) pro-isomorphism, and hence {F fn

→ F} → {F ⊗LOY
OYn
} is

also a pro-isomorphism. Now the previous argument applies.

The following conditions on the data (A, f) will be assumed throughout this subsection;
we do not assume A is Noetherian as this will not be true in applications.

A 1.7. – Assume that the data from Notation 1.1 satisfies the following:

– X is integral, i.e., A is a domain;
– j : V ↪→ X is a quasi-compact open immersion, i.e., m is the radical of a finitely

generated ideal;
– H0(V, OV ) is a finite A-module;
– fN ·H1(V, OV ) = 0 for N � 0.
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