quatrième série - tome 47 fascicule 4 juillet-août 2014 ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Bhargav BHATT & Aise Johan DE JONG Lefschetz for Local Picard groups

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

LEFSCHETZ FOR LOCAL PICARD GROUPS

BY BHARGAV BHATT AND AISE JOHAN DE JONG

ABSTRACT. – We prove a strengthening of the Grothendieck-Lefschetz hyperplane theorem for local Picard groups conjectured by Kollár. Our approach, which relies on acyclicity results for absolute integral closures, also leads to a restriction theorem for higher rank bundles on projective varieties in positive characteristic.

RÉSUMÉ. – Nous prouvons un renforcement du théorème de l'hyperplan de Grothendieck-Lefschetz pour les groupes locaux de Picard conjecturés par Kollár. Notre approche, qui s'appuie sur des résultats en fermetures absolues, conduit également à un théorème de restriction pour les faisceaux de rang supérieur sur les variétés projectives en caractéristique positive.

A classical theorem of Lefschetz asserts that non-trivial line bundles on a smooth projective variety of dimension ≥ 3 remain non-trivial upon restriction to an ample divisor, and plays a fundamental role in understanding the topology of algebraic varieties. In [6], Grothendieck recast this result in more general terms using the machinery of formal geometry and deformation theory, and also stated a local version. With a view towards moduli of higher dimensional varieties, especially the deformation theory of log canonical singularities, Kollár recently conjectured [15] that Grothendieck's local formulation remains true under weaker hypotheses than those imposed in [6]. Our goal in this paper is to prove Kollár's conjecture for rings containing a field.

Statement of results

Let (A, \mathfrak{m}) be an excellent normal local ring containing a field. Fix some $0 \neq f \in \mathfrak{m}$. Let $V = \operatorname{Spec}(A) - \{\mathfrak{m}\}$, and $V_0 = \operatorname{Spec}(A/f) - \{\mathfrak{m}\}$. The following result is the key theorem in this paper; it solves [15, Problem 1.3] completely, and [15, Problem 1.2] in characteristic 0:

THEOREM 0.1. – Assume dim $(A) \ge 4$. The restriction map $\operatorname{Pic}(V) \to \operatorname{Pic}(V_0)$ is:

- 1. injective if depth_m $(A/f) \ge 2$ and A has characteristic 0;
- 2. injective up to p^{∞} -torsion if A has characteristic p > 0.

0012-9593/04/© 2014 Société Mathématique de France. Tous droits réservés ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

This result is sharp: surjectivity fails in general, while injectivity fails in general if $\dim(A) \leq 3$, in characteristic 0 if $\operatorname{depth}_{\mathfrak{m}}(A/f) < 2$, and in characteristic p if one includes p-torsion. Theorem 0.1 leads to a fibral criterion for a Weil divisor to be Cartier in a family, see Theorem 1.30. A stronger analogue of Theorem 0.1, including the mixed characteristic case, is due to Grothendieck [6, Expose XI] under the stronger condition $\operatorname{depth}_{\mathfrak{m}}(A/f) \geq 3$; complex analytic variants of Grothendieck's theorem are proven in [7], while topological analogues are discussed in [9]. Without this depth constraint, a previously known case of Theorem 0.1 was when A has log canonical singularities in characteristic 0, and $\{\mathfrak{m}\} \subset \operatorname{Spec}(A)$ is not an lc center (see [15, Theorem 19]).

Our approach to Theorem 0.1 relies on formal geometry over absolute integral closures [2, 11], and applies to higher rank bundles as well as projective varieties. This technique then leads to a short proof of the following result:

THEOREM 0.2. – Let X be a normal projective variety of dimension $d \ge 3$ over an algebraically closed field of characteristic p > 0. If a vector bundle E on X is trivial over an ample divisor, then $(\operatorname{Frob}_X^e)^* E \simeq \mathcal{Q}_X^{\oplus r}$ for $e \gg 0$.

The numerical version of Theorem 0.2 for line bundles is due to Kleiman [13, Corollary 2, page 305]. The non-numerical version of the rank 1 case, with stronger assumptions on the singularities, is studied in [8]. This result may also be deduced from the boundedness [16] of semistable sheaves. We do not know the correct characteristic 0 analogue of this result.

An outline of the proof

Both theorems are similar in spirit, so we only discuss Theorem 0.1 here. We first prove the characteristic p result, and then deduce the characteristic 0 one by reduction modulo p and an approximation argument; the reduction necessitates the (unavoidable) depth assumption in characteristic 0. The characteristic p proof follows Grothendieck's strategy of decoupling the problem into two pieces: one in formal f-adic geometry, and the other an algebraization question. Our main new idea is to replace (thanks entirely to the Hochster-Huneke vanishing theorem [11]) our ring A with a very large extension \overline{A} with better depth properties; Grothendieck's deformation-theoretic approach then immediately solves the formal geometry problem over \overline{A} . Next, we algebraize the solution over \overline{A} by algebraically approximating formal sections of line bundles; the key here is to identify the cohomology of the formal completion of a scheme as the *derived* completion of the cohomology of the original scheme, i.e., a weak analogue of the formal functions theorem devoid of the usual finiteness constraints. Finally, we descend from \overline{A} to A; this step is trivial in our context, but witnesses the torsion in the kernel.

Acknowledgements

We thank János Kollár for many helpful discussions and email exchanges concerning Theorem 0.1, Adrian Langer for sharing with us the alternative proof of Theorem 0.2 after a first version of this paper was posted, and Brian Lehmann for bringing to our attention the question answered in Theorem 2.9.

1. Local Picard groups

The goal of this section is to prove Theorem 0.1. In §1.1, we study formal geometry along a divisor on a (punctured) local scheme abstractly, and establish certain criteria for restriction map on Picard groups to be injective. These are applied in §1.2 to prove the characteristic p part of Theorem 0.1. Using the principle of "reduction modulo p" and a standard approximation argument (sketched in §1.4), we prove the characteristic 0 part of Theorem 0.1 in §1.3. The afore-mentioned fibral criterion is recorded in §1.5. Finally, in §1.6, we give examples illustrating the necessity of the assumptions in Theorem 0.1.

1.1. Formal geometry over a punctured local scheme

We establish some notation that will be used in this section.

NOTATION 1.1. – Let (A, \mathfrak{m}) be a local ring, and fix a regular element $f \in \mathfrak{m}$. Let $X = \operatorname{Spec}(A), V = \operatorname{Spec}(A) - \{\mathfrak{m}\}$. For an X-scheme Y, write Y_n for the reduction of Y modulo f^{n+1} , and \widehat{Y} for the formal completion⁽¹⁾ of Y along Y_0 . Let $\operatorname{Vect}(Y)$ be the category of vector bundles (i.e., finite rank locally free sheaves) on Y, and write $\operatorname{Pic}(Y)$ and $\operatorname{Pic}(Y)$ for the set and groupoid of line bundles respectively. Set $\operatorname{Pic}(\widehat{Y}) := \lim \operatorname{Pic}(Y_n)$ (where the limit is in the sense of groupoids), and $\operatorname{Pic}(\widehat{Y}) := \pi_0(\operatorname{Pic}(\widehat{Y}))$. For any A-module M with associated quasi-coherent sheaf \widetilde{M} on $\operatorname{Spec}(A)$, we define $H^i_{\mathfrak{m}}(M)$ as cohomology supported along $\{\mathfrak{m}\} \subset X$ of \widetilde{M} , i.e., as the *i*th cohomology of the complex $\operatorname{RF}_{\mathfrak{m}}(M)$ defined as the homotopy-kernel of the map $\operatorname{RF}(\operatorname{Spec}(A), \widetilde{M}) \to \operatorname{RF}(V, \widetilde{M})$.

We will use formal schemes associated to certain non-Noetherian X-schemes later in this paper. Rather than developing the general theory of such schemes, we simply define the concept that will be most relevant: cohomology.

DEFINITION 1.2. – Fix an X-scheme Y. For $F \in D(\mathcal{O}_Y)$, set $\widehat{F} := \operatorname{R} \lim(F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n})$; we view \widehat{F} as an $\mathcal{O}_{\widehat{Y}} := \lim_n \mathcal{O}_{Y_n}$ -complex on $|\widehat{Y}| := Y_0$, so $\operatorname{R}\Gamma(\widehat{Y}, \widehat{F}) := \operatorname{R}\Gamma(Y_0, \widehat{F}) \simeq \operatorname{R} \lim_n \operatorname{R}\Gamma(Y_0, F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n})$.

The following two examples help explain the meaning of this definition:

EXAMPLE 1.3. – If F is a quasicoherent \mathcal{O}_X -module associated to an A-module M, then $\mathrm{R}\Gamma(\widehat{X},\widehat{F}) \simeq \mathrm{R}\lim(M \otimes_A^L A/(f^n))$. In particular, if M is A-flat, then $\mathrm{R}\Gamma(\widehat{X},\widehat{F})$ is the f-adic completion of M in the usual sense. Note that if M is not A-flat, then $\mathrm{R}\Gamma(\widehat{X},\widehat{F})$ could have cohomology in negative degrees.

EXAMPLE 1.4. – Fix a quasicoherent flat \mathcal{O}_V -module F, assumed to be obtained from an A-module M via localization. Then $\mathrm{R}\Gamma(\widehat{V},\widehat{F})$ is computed as follows. Fix an ideal $(g_1,\ldots,g_r) \subset A$ with $V(g_1,\ldots,g_r) = \{\mathfrak{m}\}$ set-theoretically (assumed to exist). Let $C(M;g_1,\ldots,g_r) := \bigotimes_{i=1}^r \left(M \xrightarrow{1} M_{g_i}\right)$ be the displayed Cech complex, and let K(M)be the cone of the natural map $C(M;g_1,\ldots,g_r) \to M$. Then the (termwise) f-adic completion of K computes $\mathrm{R}\Gamma(\widehat{V},\widehat{F})$. To see this, observe first that $K(M)/f^n K(M)$ computes

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

⁽¹⁾ The formal scheme \hat{Y} is used as a purely linguistic device to talk about compatible systems of sheaves on each Y_n , and not in a deeper manner.

 $\mathrm{R}\Gamma(V_n, F \otimes_{\partial_V}^L \mathcal{O}_{V_n})$. It follows that the term-wise *f*-adic completion of *K* computes $\mathrm{R}\lim_{\mathcal{H}} \mathrm{R}\Gamma(V_n, F \otimes_{\partial_V} \mathcal{O}_{V_n}) \simeq \mathrm{R}\Gamma(\widehat{V}, \widehat{F}).$

The derived completion functor $K \mapsto \operatorname{R} \lim(K \otimes_A^L A/f^n)$ already appears implicitly in the above definition. To access its values, recall the following definition:

DEFINITION 1.5. – Given an A-module M, we define the *f*-adic Tate module as $T_f(M) := \lim M[f^n]$ with transition maps given by powers of f; note that $T_f(M) = 0$ if $f^N \cdot M = 0$ for some N > 0.

The Tate module leads to the second of the following two descriptions of the cohomology of a formal completion:

LEMMA 1.6. – Let Y be an X-scheme such that \mathcal{O}_Y has bounded f^{∞} -torsion. For $F \in D(\mathcal{O}_Y)$, there are exact sequences

$$1 \to \mathrm{R}^{1} \lim H^{i-1}(Y_{n}, F \otimes_{\mathcal{O}_{Y}}^{L} \mathcal{O}_{Y_{n}}) \to H^{i}(\widehat{Y}, \widehat{F}) \to \lim H^{i}(Y, F \otimes_{\mathcal{O}_{Y}}^{L} \mathcal{O}_{Y_{n}}) \to 1,$$

and

$$1 \to \lim H^i(Y,F)/f^n \to H^i(\widehat{Y},\widehat{F}) \to T_f(H^{i+1}(Y,F)) \to 1.$$

Proof. – We first give a proof when Θ_Y has no *f*-torsion (which will be the only relevant case in the sequel). The first sequence is then obtained from the formula

$$\mathrm{R}\Gamma(\widehat{Y},\widehat{F})\simeq\mathrm{R}\lim\mathrm{R}\Gamma(Y,F\otimes^{L}_{\Theta_{Y}}\mathcal{O}_{Y_{n}})$$

and Milnor's exact sequence for R lim (see [18]). Applying the projection formula (since A/f^n is A-perfect) to the above gives

$$\mathrm{R}\Gamma(\widehat{Y},\widehat{F})\simeq \mathrm{R}\lim\left(\mathrm{R}\Gamma(Y,F)\otimes^{L}_{A}A/f^{n}\right).$$

The second sequence is now obtained by applying the derived *f*-adic completion functor $\operatorname{R} \lim(-\otimes_A^L A/f^n)$ to the canonical filtration on $\operatorname{R}\Gamma(Y, F)$, which proves the claim. In general, the boundedness of *f*-torsion in \mathcal{O}_Y shows that the map $\{\mathcal{O}_Y \xrightarrow{f^n} \mathcal{O}_Y\} \to \{\mathcal{O}_{Y_n}\}$ of projective systems is a (strict) pro-isomorphism, and hence $\{F \xrightarrow{f^n} F\} \to \{F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n}\}$ is also a pro-isomorphism. Now the previous argument applies.

The following conditions on the data (A, f) will be assumed throughout this subsection; we do *not* assume A is Noetherian as this will not be true in applications.

ASSUMPTION 1.7. – Assume that the data from Notation 1.1 satisfies the following:

- X is integral, i.e., A is a domain;
- $-j: V \hookrightarrow X$ is a quasi-compact open immersion, i.e., \mathfrak{m} is the radical of a finitely generated ideal;
- $H^0(V, \Theta_V)$ is a finite A-module;
- $-f^N \cdot H^1(V, \mathcal{O}_V) = 0 \text{ for } N \gg 0.$