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SEMI-POSITIVITY IN POSITIVE CHARACTERISTICS

 Z PATAKFALVI

A. – Let f : (X, ∆)→ Y be a flat, projective family of sharply F -pure, log-canonically
polarized pairs over an algebraically closed field of characteristic p > 0 such that p - ind(KX/Y + ∆).
We show that KX/Y + ∆ is nef and that f∗(OX(m(KX/Y + ∆))) is a nef vector bundle for m� 0

and divisible enough. Some of the results also extend to non log-canonically polarized pairs. The
main motivation of the above results is projectivity of proper subspaces of the moduli space of stable
pairs in positive characteristics. Other applications are Kodaira vanishing free, algebraic proofs of
corresponding positivity results in characteristic zero, and special cases of subadditivity of Kodaira-
dimension in positive characteristics.

R. – Soit f : (X, ∆)→ Y une famille projective plate de paires nettement F -pures et
log-canoniquement polarisées sur un corps algébriquement clos de caractéristique p > 0 tel que
p - ind(KX/Y + ∆). Nous montrons que KX/Y + ∆ est nef et que f∗(OX(m(KX/Y + ∆))) est un
fibré vectoriel nef pour m� 0 et qu’il est assez divisible. Certains des résultats s’étendent également
aux couples non log-canoniquement polarisés. La principale motivation de ces résultats est la projec-
tivité de sous-espaces propres de l’espace des modules des paires stables en caractéristiques positives.
D’autres applications incluent des nouvelles preuves algébriques des résultats de positivité en carac-
téristique nulle, et un cas particulier de sous-additivité de la dimension de Kodaira de caractéristique
positive.

1. Introduction

Results stating positivity of the (log-)relative canonical bundle and of the pushforwards
of its powers played an important role in the development of modern algebraic geometry
(e.g., [3]∼ Corollary 1.9 , [11, 9, 19, 45, 21]∼ Theorem 1.7, where∼ denotes our statements
of similar flavor). Applications are numerous: projectivity and quasi-projectivity of moduli
spaces (e.g., [22, 46] ∼ Corollary 4.1), subadditivity of Kodaira-dimension (e.g., [45, 21] ∼
Corollary 4.6), Shafarevich type results about hyperbolicity of moduli spaces (e.g., [34, 1,
43]), Kodaira dimension of moduli spaces (e.g., [31, 4]), etc. Most of the proofs of the above
mentioned general positivity results are either analytic or depend on Kodaira vanishing.
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Either way, they work only in characteristic zero. The word “general” and “most” has to
be stressed here: there are positivity results available for families of curves (e.g., [43, 22]),
abelian varieties [5] and K3 surfaces [27] in positive characteristics. The aim of this article is
to present positivity results available for arbitrary fiber dimensions in positive characteristics,
bypassing the earlier used analytic or Kodaira vanishing type techniques. The strongest
statements are in the case of (log)-canonically polarized fibers, but there are results for
fibers with nef log-canonical bundles as well. As in characteristic zero, one also has to put
some restrictions on singularities. Here we assume the fibers to be sharply F -pure, which
corresponds to characteristic zero notion of log-canonical singularities via reduction mod p
(see [42] for a survey on F -singularities, and Definition 2.4 for the definition of sharply
F -pure singularities).

Some differences between our results and the characteristic zero statements mentioned
above have to be stressed. First, we only claim the semi-positivity of f∗ωmX/Y for m big and
divisible enough. This is a notable difference, since the characteristic zero results usually
start with proving the m = 1 case and then deduce the rest from that. However, in positive
characteristics there are known counterexamples for the semi-positivity of f∗ωX/Y [30, 3.2].
So, any positivity result can hold only for m > 1, and its proof has to bypass the m = 1

case. Second, the characteristic zero results are birational in the sense that for example it
is enough to assume that ωF is big for a general fiber of F . In our results nefness of ωF is
essential, and for the semi-positivity of pushforwards we even need ωF to be ample. Hence,
our results give exactly what one needs for projectivity of moduli spaces (as in [22]), but yield
subadditivity of Kodaira dimension only together with the log-Minimal Model Program in
positive characteristics.

1.1. Results: normal, boundary free versions over a curve base

Here we state our results in a special, but less technical form. We assume that the spaces
involved are normal and we do not add boundary divisors to our varieties. The base is also
assumed to be a smooth projective curve. For the general form of the results, see Section 1.2.

We work over an algebraically closed field k of characteristic p > 0.

T 1.1. – Let f : X → Y be a surjective, projective morphism from a normal variety
to a smooth projective curve with normal generic fiber, such that rKX is Cartier for some
integer r > 0. Further assume that

(a) either p - r and the general fiber is sharply F -pure,
(b) or p|r and the general fiber is strongly F -regular.

Then:

(1) If KX/Y is f -nef and KXy
is semi-ample for generic y ∈ Y , then KX/Y is nef.

(2) If KX/Y is f -ample, then f∗OX(mrKX/Y ) is a nef vector bundle for m� 0.
(3) (A subadditivity of Kodaira dimension type corollary:) If KX/Y is f -semi-ample,KXy

is big for generic y ∈ Y and g(Y ) ≥ 2, then KX is big as well.
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R 1.2. – To explain the scope of the above results, let us mention a few facts
about F -singularities. First, the usual singularities of the minimal model can be defined
in arbitrary characteristics (e.g., [24]). Then, every S2, G1, sharply F -pure singularity is
semi-log-canonical (i.e., the pair of its normalization and its conductor is log-canonical)
and every strongly F -regular singularity is Kawamata log-terminal. Furthermore, if the
(log-)canonical divisor is Q-Cartier, then the difference between the two is “small” in both
cases in a measurable sense via reductions mod p [13, 15, 44, 29, 33, 32].

For example, in dimension one sharply F -pure includes smooth and nodal singularities,
and strongly F -regular includes smooth singularities. In particular, Theorem 1.1 applies to
stable curves, recovering results of [43].

In dimension two, strongly F -regular singularities (without boundaries) are equivalent to
Kawamata log-terminal singularities for p > 5 [14]. In particular Theorem 1.1 applies to
stable degenerations with Kawamata log-terminal general fibers when p > 5, regardless of
the index. Furthermore, in the sharply F -pure case, much worse singularities can be allowed
in the general fibers. For example the general fiber can have nodes or a big portion of log-
canonical singularities with index not divisible by p. See [14] and [28], for the actual list.

In higher dimensions one experiences similar behavior, but fewer explicitly worked out
examples are known. Intuitively, the non-sharply F -pure but log canonical singularities can
be thought of as being supersingular in a very strong sense. This phenomenon can be made
more precise in particular cases. For example cones over abelian varieties are sharply F -pure
exactly if the underlying abelian variety is ordinary.

Point (2) of Theorem 1.1 is the F -singularity version of the characteristic zero statement
used to show projectivity of the moduli space of stable varieties [22, 6]. Therefore, it implies
projectivity of coarse moduli spaces of certain sharply F -pure moduli functors. For the
precise statement we refer the reader to Section 1.2.

Furthermore, Theorem 1.1 combined with lifting arguments gives a new algebraic proof
of the following characteristic zero semi-positivity statement.

C 1.3. – Let f : X → Y be surjective, projective morphism from a Kawamata
log terminal variety to a smooth projective curve over an algebraically closed field of character-
istic zero. Let r be the index of KX .

(1) If KX/Y is f -semi-ample, then KX/Y is nef.
(2) If KX/Y is f -ample, then f∗OX(mrKX/Y ) is a nef vector bundle for m� 0.

1.2. Results: full generality

In algebraic geometry, one is frequently forced to work with pairs or even with non-
normal pairs for various reasons: induction on dimension, compactification, working with
non-proper varieties, etc. Hence, in the present article we put our results in a more general
framework than that of Section 1.1. The actual framework that we work in is motivated by
the main application, the projectivity of coarse moduli spaces, and is as follows.

N 1.4. – Let f : X → Y be a flat, relatively S2 and G1, equidimensional, pro-
jective morphism to a projective scheme over k and ∆ a Q-Weil divisor on X, such that
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(1) Supp ∆ contains neither codimension 0 points nor singular codimension 1 points of
the fibers,

(2) there is a p - r > 0, such that r∆ is a Z-divisor, Cartier in relative codimension 1 and
ω

[r]
X/Y (r∆) is a line bundle (note that ω[r]

X/Y (r∆) is defined as ι∗(ωrU/Y (r∆|U )) where
ι : U → X is the intersection of the relative Gorenstein locus and the locus where
r∆ is Cartier) and

(3) for all but finitely many y ∈ Y , (Xy,∆y) is sharply F -pure (see Definition 2.4).

N 1.5. – Sometimes instead of the assumptions of Notation 1.4, we drop the as-
sumption p - r, but instead of sharply F -purity we assume strong F -regularity of (Xy,∆y)

for all but finitely many y ∈ Y (see [41, Definition 2.10] for the definition of strong F -regu-
larity).

The main results of the paper are as follows.

T 1.6. – In the situation of Notation 1.4 or Notation 1.5, ifω[r]
X/Y (r∆) is f -nef and

for all but finitely many y ∈ Y , KXy + ∆y is semi-ample, then ω[r]
X/Y (r∆) is nef.

T 1.7. – In the situation of Notation 1.4, if ω
[r]
X/Y (r∆) is f -ample, then

f∗(ω
[mr]
X/Y (mr∆)) is nef for all integers m� 0.

T 1.8. – In the situation of Notation 1.5, if ω[r]
X/Y (r∆) is f -ample and Y is a

smooth curve, then f∗(ω
[mr]
X/Y (mr∆)) is nef for all integers m� 0.

Contrary to Theorem 1.6, in Theorem 1.7 we assumed that all but finitely many fibers are
sharply F -pure. In fact, when KX/Y + ∆ is Q-Cartier, the locus over which the (geomet-
ric) fibers are not sharply F -pure is closed [38, Theorem B]. Hence the seemingly weaker hy-
pothesis of Theorem 1.6 is in fact only a specialization of Notation 1.4. Further, one cannot
have assumptions only on the singularities of the generic fiber, if the goal is to prove nefness
of f∗(ω

[mr]
X/Y (mr∆)). Indeed, it is easy to construct examples of families over a curve with

very singular fibers (i.e., projective cones over high genus curves) for which the above sheaf
is not nef. On the other hand, if only the general fiber is required to be sharply F -pure, one

can still try to prove weak-positivity of f∗
(
ω

[mr]
X/Y (mr∆)

)
. This issue is addressed in other

articles (e.g., [36, 38]).

C 1.9. – In the situation of Notation 1.4, if ∆ = 0, KX/Y is f -ample and for
every y ∈ Y , Xy is sharply F -pure, Aut(Xy) is finite and there are only finitely many other

y′ ∈ Y such that Xy
∼= Xy′ , then det

(
f∗ω

[m]
X/Y

)
is an ample line bundle for all m� 0 and

divisible enough.

The author has evidence that taking determinant can be removed from the above corol-
lary. I.e., it can be shown that f∗ω

[m]
X/Y is ample as a vector bundle. This issue will be also

addressed in upcoming articles.
In addition to the above statements, the semi-ample assumption in Theorem 1.6 can be

dropped on the expense that the index r has to be 1, as stated in the following theorem.
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