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COHOMOLOGY JUMP LOCI
OF QUASI-PROJECTIVE VARIETIES

 N BUDUR  B WANG

A. – We prove that the cohomology jump loci in the space of rank one local systems
over a smooth quasi-projective variety are finite unions of torsion translates of subtori. The main
ingredients are a recent result of Dimca-Papadima, some techniques introduced by Simpson, together
with properties of the moduli space of logarithmic connections constructed by Nitsure and Simpson.

R. – Dans cet article, on montre que les lieux de saut dans l’espace de systèmes locaux
de rang un sur une variété lisse quasi-projective sont des réunions finies de subtores translatées par
des éléments de torsion. Pour cela, nous utilisons un résultat récent de Dimca-Papadima, certaines
techniques introduites par Simpson, ainsi que des propriétés de l’espace de moduli pour les connexions
logarithmiques construit par Nitsure et Simpson.

1. Introduction

Let X be a connected, finite-type CW-complex. Define

MB(X) = Hom(π1(X),C∗)

to be the variety of C∗ representations of π1(X). Then MB(X) is a direct product of (C∗)b1(X)

and a finite Abelian group. For each point ρ ∈MB(X), there exists a unique rank one local
system Lρ, whose monodromy representation is ρ. The cohomology jump loci of X are the
natural strata

Σik(X) = {ρ ∈MB(X) | dimCH
i(X,Lρ) ≥ k}.

Σik(X) is a Zariski closed subset of MB(X). A celebrated result of Simpson says that if X
is a smooth projective variety defined over C, then Σik(X) is a union of torsion translates of
subtori of MB(X).

In this paper, we generalize Simpson’s result to quasi-projective varieties.

T 1.1. – Suppose U is a smooth quasi-projective variety defined over C. Then
Σik(U) is a finite union of torsion translates of subtori of MB(U).
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When U is compact, the theorem is proved in [7, 8], [1], [15], with the strongest form
appearing in the latter. When b1(Ū) = 0, Arapura [2] showed that Σik(U) are union of
translates of subtori. The case of unitary rank one local systems on U has been considered
in [3]. Dimca and Papadima were able to prove the following:

T 1.2 ([6, Theorem C]). – Under the same assumption as Theorem 1.1, every irre-
ducible component of Σik(U) containing 1 ∈MB(U) is a subtorus.

The proof of this result reduces to the study of the infinitesimal deformations with co-
homology constraints of the trivial local system. These are governed in general by infinite-
dimensional models. In [6] it is shown that, in this case, the finite-dimensional Gysin model
due to Morgan provides the necessary linear algebra description for the infinitesimal defor-
mations.

The result of Dimca and Papadima serves as a key ingredient of our theorem. In Section 2,
we will show that each irreducible component of Σik(U) contains a torsion point. Then, in
Section 3, we will see that, thanks to Theorem 1.2, having a torsion point on an irreducible
component of Σik(U) forces this component to be a translate of subtorus.

There are two other proofs of Simpson’s theorem: one via positive characteristic methods
[11], and one via D-modules [13, 12]. However, in this paper we follow the original approach
of Simpson. There are no analogous results for higher rank local systems even in the projec-
tive case.

Acknowledgement. The first author was partially supported by the NSA, the Simons Foun-
dation grant 245850, and the BOF-OT KU Leuven grant.

2. Torsion points on the cohomology jump loci

Let X be a smooth complex projective variety, and let D =
∑n
λ=1Dλ be a simple

normal crossing divisor on X with irreducible components Dλ. Let U = X −D. Thanks to
Hironaka’s theorem on resolution of singularities, every smooth quasi-projective variety U
can be realized in this way. The goal of this section is to prove the following:

T 2.1. – Each irreducible component of Σik(U) contains a torsion point.

First, we want to reduce to the case when X and each Dλ are defined over Q̄. This can
be done using a technique which we have learnt from the proof of [15, Theorem 4.1]. We
reproduce it here.

We can assume X and each Dλ to be defined over a subring O of C, which is finitely
generated over Q. Denote the embedding of O to C by σ : O → C. Each ring homomor-
phism O → C corresponds to a point in Spec(O)(C). Denote by X0 and D0

λ the schemes
over Spec(O) which give rise to X and Dλ respectively after tensoring with C, that is
X = X0 ×Spec(O) Spec(C) and Dλ = D0

λ ×Spec(O) Spec(C). By possibly replacing O
by O[ 1

h ] for some h ∈ O, we can assume X0 and every D0
λ are smooth over Spec(O), and

all the intersections of D0
λ’s are transverse. Since each connected component of Spec(O)(C)

contains a Q̄ point, there exists a point P ∈ Spec(O)(Q̄), and a continuous path from
σ ∈ Spec(O)(C) to P in Spec(O)(C)top. Then, according to Thom’s First Isotopy Lemma
[5, Ch. 1, Theorem 3.5],X0(C) together with its strata given by theD0

λ(C), is a topologically
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locally trivial fibration in the stratified sense over Spec(O)(C)top. In particular, letting X ′

and D′λ be the corresponding fibers over P , transporting along the path gives an isomor-
phism (X − D)top ∼= (X ′ − D′)top. Recall that MB(U) and Σik(U) depend only on the
topology of U . Hence replacing U = X −D by U ′ = X ′ −D′, we may assume that X and
each Dλ are defined over Q̄.

Next, we introduce the other side of the story, namely the logarithmic flat bundles
on (X,D). A logarithmic flat bundle on (X,D) consists of a vector bundle E on X, and
a logarithmic connection ∇ : E → E ⊗ Ω1

X(logD), satisfying the integrability condition
∇2 = 0. Given a logarithmic flat bundle (E,∇), the flat sections of E on U (by which we
will always mean on U top) form a local system. And conversely, given any local system L

on U (by which, as in the introduction, we will always mean a local system on U top), it is
always obtained from some logarithmic flat bundle (E,∇). However, different logarithmic
flat bundles may give the same local system. This correspondence between local systems
on U and logarithmic flat bundles on (X,D) is very well understood (e.g., [4], [14], [9]).

For a vector bundle E on X, the structure of a logarithmic flat bundle (E,∇) on (X,D)

is the same as a DX(logD)-module structure on E, where DX(logD) is the sheaf of loga-
rithmic differentials.

Nitsure [10] and Simpson [16] constructed coarse moduli spaces, which are separated
quasi-projective schemes, for Jordan-equivalence classes of semistable Λ-modules which are
OX -coherent and torsion free, where Λ is a sheaf of rings of differential operators. The two
examples of Λ which we are concerned with are DX , the usual sheaf of differential operators
on X, and DX(logD), the sheaf of logarithmic differentials. We denote by MDR(X) and
MDR(X/D) the moduli space of rank one DX -modules and the moduli space of rank one
DX(logD)-modules, respectively. In the rank one case, semistable is the same as stable and
this condition is automatic as is the locally free condition, and Jordan-equivalence is the same
as isomorphic. Thus, the points of MDR(X) and MDR(X/D) correspond to isomorphism
classes of flat, respectively, logarithmic flat line bundles. Since we did not put any condition
on the Chern class of the underlying line bundles, in general MDR(X/D) has infinitely
many connected components. MDR(X), MDR(X/D), MB(X) and MB(U) are all algebraic
groups, except MDR(X/D) may not be of finite type.

The diagram of Fig. 1 (p. 230) plays an essential role in our proof.
Let us first explain how the arrows are defined. Since every DX -module is naturally

a DX(logD)-module, there is a natural embedding MDR(X) ↪→ MDR(X/D). On the
other hand, the embedding U ↪→ X induces a surjective map on the fundamental group
π1(U)→ π1(X). Composing this map with the representations, we have MB(X) ↪→MB(U).
For every rank one logarithmic flat bundle (E,∇), taking the residue along each Dλ is
the map res. In other words, res((E,∇)) = {resDλ

(∇)}1≤λ≤n. Around each Dλ, we
can take a small loop γλ. The map ev is the evaluation at the loops γλ. More precisely
ev(ρ) = {ρ(γλ)}1≤λ≤n.

For the horizontal arrows, RH : MDR(X) → MB(X) is taking the monodromy repre-
sentations for flat bundles. Since every logarithmic flat bundle on (X,D) restricts to a flat
bundle on U , taking the monodromy representation on U is RH : MDR(X/D)→MB(U).
The map exp : Cn → (C∗)n is component-wise defined to be multiplying by 2π

√
−1, then

taking exponential. On MDR(X/D), there are some special elements. Let ( OX , d) be the
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