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DENSE FORESTS AND DANZER SETS

BY YAAR SOLOMON AND BArRAk WEISS

ABSTRACT. — A set Y C R? that intersects every convex set of volume 1 is called a Danzer set.
It is not known whether there are Danzer sets in R¢ with growth rate O(Td). We prove that natural
candidates, such as discrete sets that arise from substitutions and from cut-and-project constructions,
are not Danzer sets. For cut and project sets our proof relies on the dynamics of homogeneous flows. We
consider a weakening of the Danzer problem, the existence of a uniformly discrete dense forest, and we
use homogeneous dynamics (in particular Ratner’s theorems on unipotent flows) to construct such sets.
We also prove an equivalence between the above problem and a well-known combinatorial problem,
and deduce the existence of Danzer sets with growth rate O(T® log T'), improving the previous bound
of O(T%log?~1 T).

REsuME. — Un ensemble de Danzer est une partie Y de R% qui rencontre tout ensemble convexe
de volume 1. On ne sait pas s’il existe des ensembles de Danzer dans R? de croissance O(T'?). Nous
démontrons que les candidats naturels, tels que les ensembles discrets produits a ’aide de substitu-
tions, de sections et de projections, ne sont pas des ensembles de Danzer. Dans le cas des sections et
projections, notre preuve repose sur la dynamique et la structure des réseaux dans les groupes algé-
briques. Nous considérons aussi une notion plus faible, ’existence d’une forét dense uniformément
discréte, et nous utilisons la dynamique homogene (en particulier les théorémes de Ratner sur les flots
unipotents) pour construire de tels ensembles. Nous démontrons aussi I’équivalence entre le probléme
de Danzer et un probléme combinatoire classique et en déduisons I’existence d’ensembles de Danzer
de croissance O(T®log T'), améliorant ainsi la borne précédente O(T%log?~* T).

1. Introduction

This paper stems from a famous unsolved problem formulated by Danzer in the 1960s (see,
e.g., [10, 13, 8, 12]). We will call a subset Y C R? a Danzer set if it intersects every convex
subset of volume 1. We will say that Y has growth g(T'), where g(T") is some function, if

(LD #(Y N B(0,T)) = O(9(T))
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1054 Y. SOLOMON AND B. WEISS

(as usual f(z) = O(g(z)) means limsup,,_, gg; < oo and B(0,T) is the Euclidean ball of
radius T centered at the origin in R%). Danzer asked whether for d > 2 there is a Danzer set
with growth 7. In this paper we present several results related to this question.

The only prior results on Danzer’s question of which we are aware are due to Bambah and
Woods. Their paper [5] contains two results. The first is a construction of a Danzer set in R¢
with growth rate T%1log? ! (T'), and the second is a proof that any finite union of grids @ is
not a Danzer set. Our paper contains parallel results.

We prove the following theorems. For detailed definitions of the terms appearing in the

statements, we refer the reader to the section in which the result is proved.

THEOREM 1.1. — Let H be a primitive substitution system on the polygonal basic tiles
{Ty,...,T,} inRe Any Delone set, which is obtained from a tiling T € X by picking a point
in the same location in each of the basic tiles, is not a Danzer set. Also the set of vertices of tiles
in such a tiling is not a Danzer set.

In particular the vertex set of a Penrose tiling is not a Danzer set. The vertex set of a
Penrose tiling has another description, namely as a cut-and-project set. We now consider
such sets.

THEOREM 1.2. — Let A be a finite union of cut-and-project sets. Then A is not a Danzer set.

As for positive results, one may try to construct sets which either satisfy a weakening of
the Danzer condition, or a weaker growth condition. The following results are in this vein. A
setY C R is called a dense forest if there is a function (T) L2, 0 such that for anyr € R?
and any direction v € S?~! ef {v € R4 : ||v|| = 1}, the distance from Y to the line segment
of length T going from z in direction v is at most (7"). It is not hard to show that a Danzer

set is a dense forest.

THEOREM 1.3. — Let U = R? and suppose X is a compact metric space on which U acts
smoothly and completely uniquely ergodically. Then for any cross-section J and any zo € X,

the set of ‘visit times’

@dg{u e U :u.xg € J}

is a uniformly discrete set which is a dense forest. In particular, uniformly discrete dense forests
exist in R? for any d.

By completely uniquely ergodically we mean that the restriction of the action to any one-
parameter subgroup of U is uniquely ergodic. Our construction of completely uniquely
ergodic actions relies on Ratner’s theorem and results on the structure of lattices in algebraic
groups.

In order to construct Danzer sets which grow slightly faster than O(T¢), we first establish
an equivalence between this question and a related finitary question, namely the ‘Danzer-
Rogers question’ (see Question 5.3). We say that a function g : A — B is doubling, where
A, B are either N or R, if there exists some C > 0 such that for all z € R we have

9(2z) < Cy(z).

(M A grid is a translated lattice.
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THEOREM 1.4. — For afixed d > 2, and a doubling function g(x) that satisfies gﬂ%) is non-
decreasing, the following are equivalent:

(i) There exists a Danzer set Y C R? of growth O(g(T)).
(ii) For every € > 0 there exists N. C [0,1]%, such that #N. = O(g(~'/%)), and such that
N. intersects every box of volume ¢ in [0, 1]°.

COROLLARY 1.5. — If D C R? is a Danzer set of growth rate g(T), where g(z) is as in
Theorem 1.4, then there exists a Danzer set contained in Q¢ of growth rate g(T).

Using Theorem 1.4 and known results for the Danzer-Rogers question, we obtain:
THEOREM 1.6. — There exists a Danzer set in R? of growth rate T*log T.

Note that for all d > 3, this improves the result of [5] mentioned above and represents the
slowest known growth rate for a Danzer set.

1.1. Structure of the paper

We have attempted to keep the different sections of this paper self-contained. The material
on substitution tilings and the cut-and-project sets, in particular the proofs of Theorems 1.1
and 1.2, are contained in §2 and §3 respectively. More results from homogeneous flows
are used in order to prove Theorem 1.3 in §4. In §5 we introduce some terminology from
computational geometry and prove Theorem 1.4 and Corollary 1.5. More background from
computational geometry and the proof of Theorem 1.6 are in §6. In §7 we list some open
questions related to the Danzer problem.
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2. Nets that Arise from Substitution Tilings

In this section we prove Theorem 1.1, i.e., that primitive substitution tilings do not give rise
to Danzer sets. We begin by quickly recalling the basics of the theory of substitution tilings.
For further reading we refer to [14, 21, 23, 25].
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