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QUASINEUTRAL LIMIT FOR VLASOV-POISSON
WITH PENROSE STABLE DATA

 D HAN-KWAN  F ROUSSET

A. – We study the quasineutral limit of a Vlasov-Poisson system that describes the
dynamics of ions in a plasma. We handle data with Sobolev regularity under the sharp assumption
that the profiles in velocity of the initial data satisfy a Penrose stability condition.

As a byproduct of our analysis, we obtain a well-posedness theory for the limit equation (which is
a Vlasov equation with Dirac measure as interaction kernel), for such data.

R. – Nous étudions la limite quasineutre d’un système de Vlasov-Poisson qui décrit la dyna-
mique d’ions dans un plasma. Nous travaillons avec des données à régularité Sobolev sous l’hypothèse
optimale que les profils en vitesse des données initiales satisfont une condition de stabilité de Penrose.

Comme corollaire de notre analyse, nous obtenons une théorie d’existence et d’unicité pour l’équa-
tion limite (qui est une équation de Vlasov avec une mesure de Dirac pour noyau d’interaction), pour
de telles données.

1. Introduction and main results

We study the quasineutral limit, that is the limit ε→ 0, for the following Vlasov-Poisson
system describing the dynamics of ions in the presence of massless electrons:

(1.1)



∂tfε + v · ∇xfε + Eε · ∇vfε = 0,

Eε = −∇xVε,

Vε − ε2∆Vε =

∫
Rd
fε dv − 1,

fε|t=0
= f0

ε .

In these equations, the function fε(t, x, v) stands for the distribution functions of the ions in
the phase space Td×Rd, d ∈ N∗, with Td := Rd/(2πZ)d. We assumed that the density of the
electrons ne satisfies a linearized Maxwell-Boltzmann law, that is ne = eVε ∼ 1 + Vε, which
accounts for the source−(1+Vε) in the Poisson equation. Such a model was recently studied
for instance in [19, 20, 21, 12]. Though we have focused on this simplified law, the arguments
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1446 D. HAN-KWAN AND F. ROUSSET

in this paper could be easily adapted to the model where the potential is given by the Poisson
equation −ε2∆Vε =

∫
Rd fε dv − e

Vε .
The dimensionless parameter ε is defined by the ratio between the Debye length of the

plasma and the typical observation length. It turns out that in most practical situations, ε is
very small, so that the limit ε → 0, which bears the name of quasineutral limit, is relevant
from the physical point of view. Observe that in the regime of small ε, we formally have that
the density of ions is almost equal to that of electrons, hence the name quasineutral. This
regime is so fundamental that it is even sometimes included in the very definition of a plasma,
see e.g., [8].

The quasineutral limit for the Vlasov-Poisson system with the Poisson equation

(1.2) − ε2∆Vε =

∫
Rd
fε dv −

∫
Td×Rd

fε dv dx,

that describes the dynamics of electrons in a fixed neutralizing background of ions is also
very interesting. Nevertheless, we shall focus in this paper on the study of (1.1). The study of
(1.2) combines the difficulties already present in this paper linked to kinetic instabilities and
those related to high frequency waves due to the large electric field that, do not occur in the
case of (1.1). The study of the combination of these two phenomena is postponed to future
work.

It is straightforward to obtain the formal quasineutral limit of (1.1) as ε → 0: we expect
that ε2∆Vε tends to zero and hence if fε converges in a reasonable way to some f , then
f should solve

(1.3)


∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇xρ, ρ =

∫
Rd
f dv,

f |t=0
= f0.

This system was named Vlasov-Dirac-Benney by Bardos [1] and studied in [3, 2]. It was also
referred to as the kinetic Shallow Water system in [20] by analogy with the classical Shallow
Water system of fluid mechanics. In particular, it was shown in [3] that the semigroup of the
linearized system around unstable equilibria is unbounded in Sobolev spaces (even with loss
of derivatives). This yields the ill-posedness of (1.3) in Sobolev spaces, see in particular the
recent work [24]. In [2], it was nevertheless shown in dimension one, i.e., for d = 1 that (1.3) is
well-posed in the class of functions f(x, v) such that for all x ∈ T, v 7→ f(x, v) is compactly
supported and is increasing for v ≤ m(t, x) and then decreasing for v ≥ m(t, x), that is to
say for functions that for all x have the shape of one bump. The method in [2] is to reduce the
problem to an infinite number of fluid type equations by using a water bag decomposition.

The mathematical study of the quasineutral limit started in the nineties with pioneering
works of Brenier and Grenier for Vlasov with the Poisson Equation (1.2), first with a limit
involving defect measures [7, 14], then with a full justification of the quasineutral limit for
initial data with uniform analytic regularity [15]. The work [15] also included a description
of the so-called plasma waves, which are time oscillations of the electric field of frequency and
amplitude O( 1

ε ). As already said, such oscillations actually do not occur in the quasineutral
limit of (1.1). More recently, in [23, 22], relying on Wasserstein stability estimates inspired
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from [25, 28], it was proved that exponentially small but rough perturbations are allowed in
the main result of [15].

In analytic regularity, it turns out that instabilities for the Vlasov-Poisson system, such
as two-stream instabilities, do not have any effect, whereas in the class of Sobolev functions,
they definitely play a crucial role. It follows that the quasineutral approximation both for
(1.1) and (1.2) is not always valid. In particular, the convergence of (1.1) to (1.3) does not
hold in general: we refer to [16, 21].

Nevertheless, it can be expected that the formal limit can be justified in Sobolev spaces for
stable situations. We shall soon be more explicit about what we mean by stable data, but this
should at least be included in the class of data for which the expected limit system (1.3) is well-
posed. The first result in this direction is due to Brenier [6] (see also [30] and [20]), in which he
justifies the quasineutral limit for initial data converging to a monokinetic distribution, that
is a Dirac mass in velocity. This corresponds to a stable though singular case since the Dirac
mass can be seen as an extremal case of a Maxwellian, that is a function with one bump.
Brenier introduced the so-called modulated energy method to prove this result. Note that in
this case the limit system is a fluid system (the incompressible Euler equations in the case
of (1.2) or the shallow water equations in the case of (1.1)) and not a kinetic equation. This
result is coherent with the fact that the instabilities present at the kinetic level do not show
up at the one-fluid level, for example the quasineutral limit of the Euler-Poisson system can
be justified in Sobolev spaces as shown for example in [9, 27], among others.

For non singular stable data with Sobolev regularity, there are only few available results
which all concern the one-dimensional case d = 1.

– In [21], using the modulated energy method, the quasineutral limit is justified for very
special initial data namely initial data converging to one bump functions that are
furthermore symmetric and space homogeneous (thus that are stationary solutions to
(1.1) and (1.3)). It is also proved that this is the best we could hope for with this method.

– Grenier sketched in [16] a result of convergence for data such that for every x the
profile in v has only one bump. The proposed proof involves a functional taking
advantage of the monotonicity in the one bump structure. Such kind of functionals
have been recently used in other settings, for example in the study of the hydrostatic
Euler equation or the Prandtl equation, see for example [31, 32, 11].

The main goal of this work is to justify the quasineutral limit that is to prove the derivation
of (1.3) from (1.1) in the general stable case and in any dimension. As we shall see below a
byproduct of the main result is the well-posedness of the system (1.3) in any dimension for
smooth data with finite Sobolev regularity such that for every x, the profile v 7→ f0(x, v)

satisfies a Penrose stability condition. This condition is automatically satisfied in dimension
one by smooth functions that for every x have a “one bump” profile, as well as by small
perturbations of such functions.

To state our results, we shall first introduce the Penrose stability condition [36, 35] for
homogeneous equilibria f(v). Let us define for the profile f the Penrose function

P(γ, τ, η, f) = 1− (2π)d
∫ +∞

0

e−(γ+iτ)s iη

1 + |η|2
· ( F v∇vf)(ηs) ds,
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