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THE UNIVERSAL ABELIAN VARIETY OVER ;

BY GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. — We establish a structure result for the universal abelian variety over @s. This implies
that the boundary divisor of @s is unirational and leads to a lower bound on the slope of the cone of
effective divisors on .

RESUME. — On établit un théoréme de structure pour la variété abélienne universelle sur &s. Le
résultat entraine que le diviseur de la frontiére de &g est unirationnel et ceci donne lieu a une borne
inférieure pour la pente du cone des diviseurs effectifs en .

The general principally polarized abelian variety [A, ©] € &, of dimension g < 5 can be
realized as a Prym variety. Abelian varieties of small dimension can be studied in this way via
the rich and concrete theory of curves, in particular, one can establish that &, is unirational
in this range. In the case g = 5, the Prym map P : R¢ — @5 is finite of degree 27, see [7];
three different proofs [6, 17], [22] of the unirationality of K¢ are known. The moduli space @,
is of general type for g > 7, see [12, 18], [21]. Determining the Kodaira dimension of &g is a
notorious open problem.

The aim of this paper is to give a simple unirational parametrization of the universal
abelian variety over &5 and hence of the boundary divisor of a compactification of @s. We
denote by ¢ : X,_1 — @y_1 the universal abelian variety of dimension g — 1 (in the
sense of stacks). The moduli space ég of principally polarized abelian varieties of dimension
g and their rank 1 degenerations is a partial compactification of %, obtained by blowing
up @,_1 in the Satake compactification, cf. [18]. Its boundary 699 is isomorphic to the
universal Kummer variety in dimension g — 1 and there exists a surjective double covering
JiXg1— 8@9. We establish a simple structure result for the boundary 8@6:

THEOREM 0.1. — The universal abelian variety X5 is unirational.

This immediately implies that the boundary divisor 8@ is unirational as well. What we
prove is actually stronger than Theorem 0.1. Over the moduli space &, of smooth Prym
curves of genus g, we consider the universal Prym variety ¢ : yg — R, obtained by pulling

back X, 1 — @,_, viathe Prymmap P : R, — @, 1. Let R, be the moduli space of stable
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522 G. FARKAS AND A. VERRA

Prym curves of genus g together with the universal Prym curve 7 : € — ﬁg of genus 2¢g — 1.
~g—1 ~ ~
Ire’ =¢ Xz - Xz @ isthe (g — 1)-fold product, one has a universal Abel-Prym
g9 9

~g-1
rational map ap : e s yg, whose restriction on each individual Prym variety is the
usual Abel-Prym map. The rational map ap is dominant and generically finite (see Section 4
for details). We prove the following result:

~5 _
THEOREM 0.2. — The five-fold product G of the universal Prym curve over Rg is unira-
tional.

The key idea in the proof of Theorem 0.2 is to view smooth Prym curves of genus 6
as discriminants of conic bundles, via their representation as symmetric determinants
of quadratic forms in three variables. We fix four general points wuq,...,us € P> and
set w; := (u;,u;) € P? x P2, Since the action of the automorphism group Aut(P? x P?)
on P? x P? is 4-transitive, any set of four general points in P? x P? can be brought to this
form. We then consider the linear system

P15 = j?wl’m’um}(Z, 2)‘ C )@P2XP2(272)

of hypersurfaces Q C P? x P? of bidegree (2, 2) which are nodal at wy, . .., w4. For a general
threefold Q € P'®, the first projection p : Q — P? induces a conic bundle structure with a
sextic discriminant curve T' C P? such that p(Sing(Q)) = Sing(T"). The discriminant curve I
is nodal precisely at the points uq, ..., us. Furthermore, I' is equipped with an unramified
double cover pr : I' — T, parametrizing the lines which are components of the singular fibres
of p : Q — P%. By normalizing, pr lifts to an unramified double cover f : C — C between
the normalization C of I' and the normalization C of T respectively. Note that there exists
an exact sequence of generalized Prym varieties

0 — (C*)* — P(I'/T) — P(C/C) — 0.

One can show without much effort that the assignment P** 5 Q — [0 L €] € %
is dominant. This offers an alternative, much simpler, proof of the unirationality of Rs.
However, much more can be obtained with this construction.

Let G := P? x (P?)V = {(0,£) : 0 € P>, £ € {0} x (P?)"} be the Hilbert scheme of lines in
the fibres of the first projection p : P? x P> — P2, Since containing a given line in a fibre of p
imposes three linear conditions on the linear system P'® of threefolds Q C P? x P? as above,
it follows that imposing the condition {o;} X £; C @ for five general lines, singles out a unique
conic bundle @ € P'®. Thisinduces an étale double cover f : C — C, as above, over a smooth
curve of genus 6. Moreover, f comes equipped with five marked points ¢4, ...,05 € C. To
summarize, we can define a rational map

(G- T, 4((01,61),...,(05,65)) = (f .- C,el,...,es),

between two 20-dimensional varieties, where G® denotes the 5-fold product of G.
. 5 A . AT . .
THEOREM 0.3. — The morphism ¢ : G° --» € is dominant, so that G is unirational.
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More precisely, we show that G® is birationally isomorphic to the fibre product PISX% %5.
In order to set Theorem 0.3 on the right footing and in view of enumerative calculations,
we introduce a P>-bundle = : P(J#) — S over the quintic del Pezzo surface S obtained
by blowing up P? at the points w1, ..., us. The rank 3 vector bundle % on S is obtained
by making an elementary transformation along the four exceptional divisors Ey,..., Ey
over uy, ..., us. The nodal threefolds Q  P? x P? considered above can be thought of as
sections of a tautological linear system on P(/) and, via the identification

j?w1,...,w4}(2) 2)| = ’@p(m)(Q)

we can view 4-nodal conic bundles in P? x P? as smooth conic bundles over S. In this way
the numerical characters of a pencil of such conic bundles can be computed (see Sections 2
and 3 for details).

)

Theorem 0.3 is then used to give a lower bound for the slope of the effective cone of g
(though we stop short of determining the Kodaira dimension of &g). Recall that if E is
an effective divisor on the perfect cone compactification @g of @, with no component
supported on the boundary Dy, := @, — @, and [E] = a\; — b[D,], where \; € CHl(ﬁg)
is the Hodge class, then the slope of E is defined as s(E) := § > 0. The slope s(@,) of the
effective cone of divisors of &, is the infimum of the slopes of all effective divisors on &,,. This
important invariant governs to a large extent the birational geometry of @g; for instance,
since Kﬁg = (g + 1)M\1 — [D,), the variety &, is of general type if s(&,) < g + 1, and
uniruled when s(&,) > g+ 1. It is shown in the appendix of [14] that the slope of the moduli
space @g is independent of the choice of a toroidal compactification.

It is known that 5(94) = 8 and that the Jacobian locus J#, C @, achieves the minimal
slope [19]; one of the results of [9] is the calculation s(#5) = %. Furthermore, the only
irreducible effective divisor on @5 of minimal slope is the closure of the Andreotti-Mayer
divisor N/ consisting of 5-dimensional ppav’s [A, ©] for which the theta divisor © is singular
at a point which is not 2-torsion. Concerning &g, we establish the following estimate:

THEOREM 0.4. — The following lower bound holds: s(g) > %.

Note that this is the first concrete lower bound on the slope of @g. The idea of proof of
~5
Theorem 0.4 is very simple. Since & is unirational, we choose a suitable sweeping rational
~5 -
curve i : P! — %, which we then push forward to &g as follows:

h
P! [ X5 — = Ds.

Here @6 and ¥ are partial compactifications of %, and X5 respectively which are described
in Section 4, whereas Dg is the boundary divisor of @. The curve h(Pl) sweeps the boundary
divisor of @ and intersects non-negatively any effective divisor on &g not containing Dg. In
particular,
1
o(Fp) > " )10,
h(P7) - A\
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