quatrième série - tome 49

fascicule 3 mai-juin 2016

ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Gavril FARKAS & Alessandro VERRA

The universal abelian variety over ${\it lpha}_{5}$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l'École Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Antoine CHAMBERT-LOIR

Publication fondée en 1864 par Louis Pasteur Comité de rédaction au 1er janvier 2016

Continuée de 1872 à 1882 par H. SAINTE-CLAIRE DEVILLE

de 1883 à 1888 par H. Debray de 1889 à 1900 par C. Hermite de 1901 à 1917 par G. Darboux de 1918 à 1941 par É. Picard de 1942 à 1967 par P. Montel N. Anantharaman I. Gallagher
P. Bernard B. Kleiner
E. Breuillard E. Kowalski
R. Cerf M. Mustată

A. CHAMBERT-LOIR L. SALOFF-COSTE

Rédaction / Editor

Annales Scientifiques de l'École Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France. Tél.: (33) 1 44 32 20 88. Fax: (33) 1 44 32 20 80.

annales@ens.fr

Édition / Publication

Société Mathématique de France Institut Henri Poincaré 11, rue Pierre et Marie Curie 75231 Paris Cedex 05

> Tél.: (33) 01 44 27 67 99 Fax: (33) 01 40 46 90 96

ISSN 0012-9593

Abonnements / Subscriptions

Maison de la SMF Case 916 - Luminy 13288 Marseille Cedex 09 Fax: (33) 04 91 41 17 51

email: smf@smf.univ-mrs.fr

Tarifs

Europe : 515 €. Hors Europe : 545 €. Vente au numéro : 77 €.

© 2016 Société Mathématique de France, Paris

En application de la loi du 1^{er} juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l'autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

Directeur de la publication : Stéphane Seuret

Périodicité: 6 nos / an

THE UNIVERSAL ABELIAN VARIETY OVER \mathscr{Q}_5

BY GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. – We establish a structure result for the universal abelian variety over \mathscr{Q}_5 . This implies that the boundary divisor of $\overline{\mathscr{Q}}_6$ is unirational and leads to a lower bound on the slope of the cone of effective divisors on $\overline{\mathscr{Q}}_6$.

RÉSUMÉ. – On établit un théorème de structure pour la variété abélienne universelle sur \mathcal{Q}_5 . Le résultat entraîne que le diviseur de la frontière de $\overline{\mathcal{Q}}_6$ est unirationnel et ceci donne lieu à une borne inférieure pour la pente du cône des diviseurs effectifs en $\overline{\mathcal{Q}}_6$.

The general principally polarized abelian variety $[A,\Theta]\in\mathcal{C}_g$ of dimension $g\leq 5$ can be realized as a Prym variety. Abelian varieties of small dimension can be studied in this way via the rich and concrete theory of curves, in particular, one can establish that \mathcal{C}_g is unirational in this range. In the case g=5, the Prym map $P:\mathcal{R}_6\to\mathcal{C}_5$ is finite of degree 27, see [7]; three different proofs [6,17], [22] of the unirationality of \mathcal{R}_6 are known. The moduli space \mathcal{C}_g is of general type for $g\geq 7$, see [12,18], [21]. Determining the Kodaira dimension of \mathcal{C}_6 is a notorious open problem.

The aim of this paper is to give a simple unirational parametrization of the universal abelian variety over \mathscr{C}_5 and hence of the boundary divisor of a compactification of \mathscr{C}_6 . We denote by $\phi: \mathscr{X}_{g-1} \to \mathscr{C}_{g-1}$ the universal abelian variety of dimension g-1 (in the sense of stacks). The moduli space $\widetilde{\mathscr{C}}_g$ of principally polarized abelian varieties of dimension g and their rank 1 degenerations is a partial compactification of \mathscr{C}_g obtained by blowing up \mathscr{C}_{g-1} in the Satake compactification, cf. [18]. Its boundary $\partial \widetilde{\mathscr{C}}_g$ is isomorphic to the universal Kummer variety in dimension g-1 and there exists a surjective double covering $j:\mathscr{X}_{g-1}\to\partial\widetilde{\mathscr{C}}_g$. We establish a simple structure result for the boundary $\partial\widetilde{\mathscr{C}}_6$:

Theorem 0.1. – The universal abelian variety χ_5 is unirational.

This immediately implies that the boundary divisor $\partial \widetilde{\mathscr{A}}_6$ is unirational as well. What we prove is actually stronger than Theorem 0.1. Over the moduli space \mathscr{R}_g of smooth Prym curves of genus g, we consider the universal Prym variety $\varphi: \mathscr{Y}_g \to \mathscr{R}_g$ obtained by pulling back $\mathscr{X}_{g-1} \to \mathscr{A}_{g-1}$ via the Prym map $P: \mathscr{R}_g \to \mathscr{A}_{g-1}$. Let $\overline{\mathscr{R}}_g$ be the moduli space of stable

Prym curves of genus g together with the universal Prym curve $\tilde{\pi}: \widetilde{\mathcal{C}} \to \overline{\mathcal{R}}_g$ of genus 2g-1. If $\widetilde{\mathcal{C}}^{g-1} := \widetilde{\mathcal{C}} \times_{\overline{\mathcal{R}}_g} \cdots \times_{\overline{\mathcal{R}}_g} \widetilde{\mathcal{C}}$ is the (g-1)-fold product, one has a universal *Abel-Prym* rational map $\mathfrak{ap}: \widetilde{\mathcal{C}}^{g-1} \dashrightarrow \mathcal{Y}_g$, whose restriction on each individual Prym variety is the usual Abel-Prym map. The rational map \mathfrak{ap} is dominant and generically finite (see Section 4 for details). We prove the following result:

Theorem 0.2. – The five-fold product $\widetilde{\mathscr{C}}^5$ of the universal Prym curve over $\overline{\mathscr{R}}_6$ is unirational.

The key idea in the proof of Theorem 0.2 is to view smooth Prym curves of genus 6 as discriminants of conic bundles, via their representation as symmetric determinants of quadratic forms in three variables. We fix four general points $u_1, \ldots, u_4 \in \mathbf{P}^2$ and set $w_i := (u_i, u_i) \in \mathbf{P}^2 \times \mathbf{P}^2$. Since the action of the automorphism group $\operatorname{Aut}(\mathbf{P}^2 \times \mathbf{P}^2)$ on $\mathbf{P}^2 \times \mathbf{P}^2$ is 4-transitive, any set of four general points in $\mathbf{P}^2 \times \mathbf{P}^2$ can be brought to this form. We then consider the linear system

$$\mathbf{P}^{15} := \left| \mathcal{I}^2_{\{w_1, \dots, w_4\}}(2, 2) \right| \subset \left| \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(2, 2) \right|$$

of hypersurfaces $Q \subset \mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (2,2) which are nodal at w_1, \ldots, w_4 . For a general threefold $Q \in \mathbf{P}^{15}$, the first projection $p: Q \to \mathbf{P}^2$ induces a conic bundle structure with a sextic discriminant curve $\Gamma \subset \mathbf{P}^2$ such that $p(\operatorname{Sing}(Q)) = \operatorname{Sing}(\Gamma)$. The discriminant curve Γ is nodal precisely at the points u_1, \ldots, u_4 . Furthermore, Γ is equipped with an unramified double cover $p_{\Gamma}: \widetilde{\Gamma} \to \Gamma$, parametrizing the lines which are components of the singular fibres of $p: Q \to \mathbf{P}^2$. By normalizing, p_{Γ} lifts to an unramified double cover $f: \widetilde{C} \to C$ between the normalization \widetilde{C} of $\widetilde{\Gamma}$ and the normalization C of Γ respectively. Note that there exists an exact sequence of generalized Prym varieties

$$0 \longrightarrow (\mathbf{C}^*)^4 \longrightarrow P(\widetilde{\Gamma}/\Gamma) \longrightarrow P(\widetilde{C}/C) \longrightarrow 0.$$

One can show without much effort that the assignment $\mathbf{P}^{15}\ni Q\mapsto [\widetilde{C}\stackrel{f}{\to}C]\in \mathcal{R}_{6}$ is dominant. This offers an alternative, much simpler, proof of the unirationality of \mathcal{R}_{6} . However, much more can be obtained with this construction.

Let $G := \mathbf{P}^2 \times (\mathbf{P}^2)^\vee = \left\{ (o,\ell) : o \in \mathbf{P}^2, \ell \in \{o\} \times (\mathbf{P}^2)^\vee \right\}$ be the Hilbert scheme of lines in the fibres of the first projection $p : \mathbf{P}^2 \times \mathbf{P}^2 \to \mathbf{P}^2$. Since containing a given line in a fibre of p imposes three linear conditions on the linear system \mathbf{P}^{15} of threefolds $Q \subset \mathbf{P}^2 \times \mathbf{P}^2$ as above, it follows that imposing the condition $\{o_i\} \times \ell_i \subset Q$ for five general lines, singles out a unique conic bundle $Q \in \mathbf{P}^{15}$. This induces an étale double cover $f : \widetilde{C} \to C$, as above, over a smooth curve of genus 6. Moreover, f comes equipped with five marked points $\ell_1, \ldots, \ell_5 \in \widetilde{C}$. To summarize, we can define a rational map

$$\zeta: \mathbf{G}^5 \dashrightarrow \widetilde{\mathscr{C}}^5, \quad \zeta\Big((o_1, \ell_1), \dots, (o_5, \ell_5)\Big) := \Big(f: \widetilde{C} \to C, \ell_1, \dots, \ell_5\Big),$$

between two 20-dimensional varieties, where G^5 denotes the 5-fold product of G.

Theorem 0.3. – The morphism $\zeta: \mathbf{G}^5 \dashrightarrow \widetilde{\mathcal{C}}^5$ is dominant, so that $\widetilde{\mathcal{C}}^5$ is unirational.

More precisely, we show that G^5 is birationally isomorphic to the fibre product $P^{15} \times_{\overline{\mathcal{R}}_6} \widetilde{\mathbb{C}}^5$. In order to set Theorem 0.3 on the right footing and in view of enumerative calculations, we introduce a P^2 -bundle $\pi: P(\mathcal{M}) \to S$ over the quintic del Pezzo surface S obtained by blowing up P^2 at the points u_1, \ldots, u_4 . The rank 3 vector bundle \mathcal{M} on S is obtained by making an elementary transformation along the four exceptional divisors E_1, \ldots, E_4 over u_1, \ldots, u_4 . The nodal threefolds $Q \subset P^2 \times P^2$ considered above can be thought of as sections of a tautological linear system on $P(\mathcal{M})$ and, via the identification

$$\left|\mathscr{I}^2_{\{w_1,\ldots,w_4\}}(2,2)\right| = \left|\mathscr{O}_{\mathbf{P}(\mathscr{M})}(2)\right|,$$

we can view 4-nodal conic bundles in $\mathbf{P}^2 \times \mathbf{P}^2$ as *smooth* conic bundles over S. In this way the numerical characters of a pencil of such conic bundles can be computed (see Sections 2 and 3 for details).

Theorem 0.3 is then used to give a lower bound for the slope of the effective cone of $\overline{\mathcal{B}}_6$ (though we stop short of determining the Kodaira dimension of $\overline{\mathcal{B}}_6$). Recall that if E is an effective divisor on the perfect cone compactification $\overline{\mathcal{B}}_g$ of \mathcal{B}_g with no component supported on the boundary $D_g := \overline{\mathcal{B}}_g - \mathcal{B}_g$ and $[E] = a\lambda_1 - b[D_g]$, where $\lambda_1 \in CH^1(\widetilde{\mathcal{B}}_g)$ is the Hodge class, then the slope of E is defined as $s(E) := \frac{a}{b} \geq 0$. The slope $s(\overline{\mathcal{B}}_g)$ of the effective cone of divisors of $\overline{\mathcal{B}}_g$ is the infimum of the slopes of all effective divisors on $\overline{\mathcal{B}}_g$. This important invariant governs to a large extent the birational geometry of $\overline{\mathcal{B}}_g$; for instance, since $K_{\overline{\mathcal{B}}_g} = (g+1)\lambda_1 - [D_g]$, the variety $\overline{\mathcal{B}}_g$ is of general type if $s(\overline{\mathcal{B}}_g) < g+1$, and uniruled when $s(\overline{\mathcal{B}}_g) > g+1$. It is shown in the appendix of [14] that the slope of the moduli space $\overline{\mathcal{B}}_g$ is independent of the choice of a toroidal compactification.

It is known that $s(\overline{\mathcal{U}}_4)=8$ and that the Jacobian locus $\overline{\mathcal{M}}_4\subset\overline{\mathcal{U}}_4$ achieves the minimal slope [19]; one of the results of [9] is the calculation $s(\overline{\mathcal{U}}_5)=\frac{54}{7}$. Furthermore, the only irreducible effective divisor on $\overline{\mathcal{U}}_5$ of minimal slope is the closure of the Andreotti-Mayer divisor N_0' consisting of 5-dimensional ppav's $[A,\Theta]$ for which the theta divisor Θ is singular at a point which is not 2-torsion. Concerning $\overline{\mathcal{U}}_6$, we establish the following estimate:

Theorem 0.4. – The following lower bound holds: $s(\overline{\mathcal{U}}_6) \geq \frac{53}{10}$.

Note that this is the first concrete lower bound on the slope of $\overline{\mathcal{Q}}_6$. The idea of proof of Theorem 0.4 is very simple. Since $\widetilde{\mathcal{C}}^5$ is unirational, we choose a suitable sweeping rational curve $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$, which we then push forward to $\overline{\mathcal{Q}}_6$ as follows:

$$\mathbf{P}^1 \xrightarrow{i} \widetilde{\mathcal{E}}^5 \xrightarrow{\mathfrak{ap}} \widetilde{\mathcal{Y}}_6 \longrightarrow \widetilde{\mathcal{X}}_5 \xrightarrow{j} D_6.$$

Here $\widetilde{\mathcal{Y}}_6$ and $\widetilde{\mathcal{X}}_5$ are partial compactifications of \mathcal{Y}_6 and \mathcal{X}_5 respectively which are described in Section 4, whereas D_6 is the boundary divisor of $\overline{\mathcal{B}}_6$. The curve $h(\mathbf{P}^1)$ sweeps the boundary divisor of $\overline{\mathcal{B}}_6$ and intersects non-negatively any effective divisor on $\overline{\mathcal{B}}_6$ not containing D_6 . In particular,

$$s(\overline{\mathcal{C}}_6) \ge \frac{h(\mathbf{P}^1) \cdot [D_6]}{h(\mathbf{P}^1) \cdot \lambda_1}.$$