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A “STRANGE” FUNCTIONAL EQUATION
FOR EISENSTEIN SERIES
AND MIRACULOUS DUALITY
ON THE MODULI STACK OF BUNDLES

BY DEenNNIS GAITSGORY

ABSTRACT. — We show that the failure of the usual Verdier duality on Bung leads to a new duality
functor on the category of D-modules, and we study its relation to the operation of Eisenstein series.

RESUME. — Dans cet article, on démontre que la dualité de Verdier habituelle ne tenant pas pour le
champ Bung, on peut la remplacer par un autre foncteur de dualité. On étudie la relation entre celui-ci
et le foncteur de série d’Eisenstein.

Introduction

0.1. Context for the present work

0.1.1. — This paper arose in the process of developing what V. Drinfeld calls the geometric
theory of automorphic functions. 1.e., we study sheaves on the moduli stack Bung of principal
G-bundles on a curve X. Here and elsewhere in the paper, we fix an algebraically closed
ground field k, and we let G be a reductive group and X a smooth and complete curve over k.

In the bulk of the paper we will take k to be of characteristic 0, and by a “sheaf”
we will understand an object of the derived category of D-modules. However, with
appropriate modifications, our results apply also to £-adic sheaves, or any other reasonable
sheaf-theoretic situation.

Much of the motivation for the study of sheaves on Bung comes from the so-called
geometric Langlands program. In line with this, the main results of this paper have a
transparent meaning in terms of this program, see Sect. 0.2. However, one can also view
them from the perspective of the classical theory of automorphic functions (rather, we will
see phenomena that so far have not been studied classically).
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0.1.2. Constant term and Eisenstein series functors. — To explain what is done in this paper
we will first recall the main result of [6].

Let P C G be a parabolic subgroup with Levi quotient M. The diagram of groups

G<—P—->M
gives rise to a diagram of stacks
Bunp
/ \
0.1) Bung Bunyy .

Using this diagram as “pull-push,” one can write down several functors connecting the
categories of D-modules on Bung and Bunyy, respectively. By analogy with the classical
theory of automorphic functions, we call the functors going from Bunys to Bung “Eisenstein
series,” and the functors going from Bung to Buny,s “constant term".

Namely, we have
Eis) ;= p1oq*, D-mod(Buny) — D-mod(Bung),
Eisy :=psoq', D-mod(Buny) — D-mod(Bung),
CT, :=q op*, D-mod(Bung)— D-mod(Bunyy),
CT, :=qsxo0p', D-mod(Bung) — D-mod(Bunyy).

Note that unlike the classical theory, where there is only one pull-back and one push-
forward for functions, for sheaves there are two options: ! and *, for both pull-back and push-
forward. The interaction of these two options is one way to look at what this paper is about.

Among the above functors, there are some obvious adjoint pairs: Eis, is the left adjoint
of CT, and CT) is the left adjoint of Eis.

In addition to this, the following, perhaps a little unexpected, result was proved in [6]:
THEOREM 0.1.3. — The functors CTy and CT, are canonically isomorphic.

In the statement of the theorem the superscript “—” means the constant term functor
taken with respect to the opposite parabolic P~ (note that the Levi quotients of P and P~
are canonically identified).

Our goal in the present paper is to understand what implication the above-mentioned
isomorphism

CT, ~ CT,
has for the Eisenstein series functors Eisy and Eis,. The conclusion will be what we will call
a “strange” functional Equation (0.9), explained below.

In order to explain what the “strange” functional equation does, we will need to go a little
deeper into what one may call the “functional-analytic” aspects of the study of Bung.
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0.1.4. Verdier duality on stacks. — The starting point for the “analytic” issues that we will
be dealing with is that the stack Bung is not quasi-compact (this is parallel to the fact that in
the classical theory, the automorphic space is not compact, leading to a host of interesting
analytic phenomena). The particular phenomenon that we will focus on is the absence of the
usual Verdier duality functor, and what replaces it.

First off, it is well-known (see, e.g., [5, Sect. 2]) that if ¥ is an arbitrary reasonable ") quasi-
compact algebraic stack, then the category D-mod(¥) is compactly generated and naturally
self-dual.

Perhaps, the shortest way to understand the meaning of self-duality is that the subcategory
D-mod(%)¢ < D-mod(¥) consisting of compact objects carries a canonically defined
contravariant self-equivalence, called Verdier duality. A more flexible way of interpreting the
same phenomenon is an equivalence, denoted D, between D-mod(¥) and its dual category
D-mod( %)Y (we refer the reader to [4, Sect. 1], where the basics of the notion of duality for
DG categories are reviewed).

Let us now remove the assumption that % be quasi-compact. Then there is another
geometric condition, called “truncatability” that ensures that D-mod(%) is compactly
generated (see [5, Definition 4.1.1], where this notion is introduced). We remark here that
the goal of the paper [5] was to show that the stack Bung is truncatable. The reader who is
not familiar with this notion is advised to ignore it on the first pass.

Thus, let us assume that ¥ is truncatable. However, there still is no obvious replacement
for Verdier duality: extending the quasi-compact case, one can define a functor

(D-mod(%))°" — D-mod(¥).

but it no longer lands in D-mod(%)¢ (unless ¥ is a disjoint union of quasi-compact stacks).
In the language of dual categories, we have a functor

Ps-Id o, paive : D-mod(¥%)" — D-mod(¥),
but it is no longer an equivalence. ®

In particular, the functor Ps-Idgun; naive 1S 70f an equivalence, unless G is a torus.

0.1.5. The pseudo-identity functor. — To potentially remedy this, V. Drinfeld suggested
another functor, denoted

Ps-Idy, : D-mod(%)¥ — D-mod(%),

see [5, Sect. 4.4.8] or Sect. 3.1 of the present paper.

Now, it is not true that for all truncatable stacks ¥, the functor Ps-Id¢,) is an equivalence.
In [5] the stacks for which it is an equivalence are called “miraculous”.

We can now formulate the main result of this paper (conjectured by V. Drinfeld):
THEOREM 0.1.6. — The stack Bung is miraculous.

(D The word “reasonable” here does not have a technical meaning; the technical term is “QCA,” which means that
the automorphism group of any field-valued point is affine.
@ The category D-mod (%) and the functor Ps-Id¢/ naive Will be described explicitly in Sect. 1.2.
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