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ALGEBRAIC GEOMETRY BETWEEN

NOETHER AND NOETHER —

A FORGOTTEN CHAPTER IN THE HISTORY OF

ALGEBRAIC GEOMETRY

Jeremy GRAY (*)

ABSTRACT. — Mathematicians and historians generally regard the modern period
in algebraic geometry as starting with the work of Kronecker and Hilbert. But the
relevant papers by Hilbert are often regarded as reformulating invariant theory, a much
more algebraic topic, while Kronecker has been presented as the doctrinaire exponent
of finite, arithmetical mathematics. Attention is then focused on the Italian tradition,
leaving the path to Emmy Noether obscure and forgotten.

There was, however, a steady flow of papers responding to the work of both Hilbert
and Kronecker. The Hungarian mathematicians Gyula (Julius) König and József
Kürschák, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel
Lasker and the English school teacher F.S. Macaulay all wrote extensively on the
subject. This work is closely connected to a growing sophistication in the definitions
of rings, fields and related concepts. The shifting emphases of their work shed light
on how algebraic geometry owes much to both its distinguished founders, and how the
balance was struck between algebra and geometry in the period immediately before
Emmy Noether began her work.

RÉSUMÉ. — LA GÉOMÉTRIE ALGÉBRIQUE DE NOETHER À NOETHER —

UN CHAPITRE OUBLIÉ DE L’HISTOIRE DE LA THÉORIE. — Mathématiciens et
historiens considèrent en général que les travaux de Kronecker et de Hilbert inaugurent
la période moderne de la géométrie algébrique. Mais on a souvent envisagé les articles
correspondants de Hilbert comme une reformulation de la théorie des invariants,
sujet de caractère nettement plus algébrique, alors que Kronecker était présenté
comme promoteur doctrinaire d’une mathématique arithmétisée, finie. À partir de là,
l’attention s’est portée sur la tradition italienne, laissant dans l’oubli la voie menant à
Emmy Noether.

Et pourtant, il y eut un flux continu de publications, répondant aux travaux de
Hilbert aussi bien que de Kronecker. Les mathématiciens hongrois Gyula (Julius)
König et József Kürschák, les Français Jules Molk et Jacques Hadamard, Emmanuel
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Lasker et enfin le professeur de lycée anglais F.S. Macaulay, ont tous publié abondam-
ment sur le sujet. Ces travaux sont étroitement liés à une élaboration progressive des
notions d’anneau, de corps, et autres concepts connexes. L’évolution des préoccupations

que manifestent ces publications fait ressortir de combien la géométrie algébrique est
redevable à ses deux éminents fondateurs, et la façon dont se présentaient les rapports
entre algèbre et géométrie dans la période immédiatement antérieure aux débuts de
l’œuvre d’Emmy Noether.

INTRODUCTION

While there has been a considerable amount of historical work done

on many topics in the history of mathematics around 1900, algebraic

geometry continues to evade discussion, perhaps as befits the difficulty

of the subject. It is difficult if not impossible to obtain an adequate

treatment, of reasonable length and sophistication, of many of the key

figures in the period and, as I hope to show here, many of the interesting

and important minor figures have been completely forgotten.

The best literature (Dieudonné [1974], Shafarevich [1974]) rightly tells

a story with Riemann as a vital influence and the theories of Riemann

surfaces and Abelian functions as central topics. This soon divided into

a transcendental enquiry and two algebraic-geometrical ones, one more

algebraic, the other more geometrical. From the transcendental and the

geometrical perspectives, Picard in France, Castelnuovo and Enriques

in Italy are the respective dominant figures at the turn of the 20th

century.1 The algebraic-geometrical aspect was presented most notably

by A. Brill and M. Noether, with extensions by such as Bertini. There

was then an arithmetical theory developed by Hensel and Landsberg.

What is strangely hard to find is accounts of a strand that flourished

at the same time, and which is more visible today in many versions of

what may be called classical algebraic geometry. In this area two major

theorems are associated with David Hilbert: the basis theorem and the

Nullstellensatz (or theorem of the zeros). For a history of these results

one must turn to two classic papers: Hermann Weyl’s obituary of Hilbert,

and van der Waerden’s notes on Hilbert’s geometrical work, published

in the 2nd volume of Hilbert’s Gesammelte Abhandlungen. Dieudonné

suggested, and the simplest scratching around confirms, that one of the

major figures in the creation of an algebraic geometry of n dimensions was

1 See Gray [1989] and Houzel [1991].
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Leopold Kronecker, and he compared Kronecker’s work with the different

but overlapping theories of Dedekind and Weber.

It is hardly surprising that mathematicians had their way with the

history of such a difficult subject for so long, although there is now a

much more comprehensive account by Corry [1996]. Van der Waerden’s

three pages offer a classic account: Hilbert’s many papers are reduced to

two that really matter, the turning point in mathematicians’ interests is

neatly characterised (away from explicit formulae and towards conceptual

clarification). One tradition ends, another gets off to a fine start with

papers by Lasker, Macaulay and, in due course Emmy Noether and her

school. Since these are indeed the origins of the ideas that dominated

the subject for so long, the effect is that of a master telling you all

you need to know. One realises that the past was surely messier, but is

lulled into thinking that the details would make no significant difference.

Weyl’s account confirms this impression. It gives more details of the

work in invariant theory, but ends with the same brief claim that on the

foundations of Hilbert’s work was erected the modern theory of polynomial

ideals (for which we read commutative algebra).

Historians of algebraic geometry have taken their cue from the mathe-

maticians. The subject of invariant theory is notoriously difficult, and one

is understandably reluctant to contest a story that says that Hilbert put

an end to it. The incentive is to treat the topic as background, part of the

pre-history of algebraic geometry and the history of something else (group

representation theory in the manner of Weyl, perhaps). It might seem odd

that Hilbert’s famous theorems arise in such an algebraic setting, but the

whole relationship between commutative algebra and algebraic geome-

try is shrouded in just such ambiguities. Zariski and Samuel called their

famous book Commutative algebra the child of an unborn parent. The

parent, never to be written, was a book on algebraic geometry, which

they called “the main field of applications of, and the principal incentive

for new research in, commutative algebra” [1958, p. v]. The importance of

commutative algebra is only underlined by the more avowedly geometrical

treatise of Hodge and Pedoe, who introduced their third and final volume

by invoking “the needs of those geometers who are anxious to acquire the

new and powerful tools provided by modern algebra, and who also want to

see what they mean in terms of those ideas familiar to them” [1954, p. vii].
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It is not part of this paper to take the story up to the present day. But

it should be noted that, if one examines later books on algebraic geometry,

the most important novelties are surely the introduction of cohomology

theories and, after Grothendieck, the language of schemes. In many ways

Grothendieck’s ideas produce the unification of commutative algebra and

algebraic geometry that the mathematicians discussed in this paper seem

to have regarded from afar.

The purpose of this paper is, rather, to explore the various historical

problems that lie hidden behind the tidy histories and mathematical com-

plexities. First, I look in more detail at the historical literature. Then we

examine what Hilbert wrote, and then we consider Kronecker’s contribu-

tion, notably his Grundzüge [1882], and try to see what it contained and

what its influence was. It might seem that anyone who has radical opin-

ions about the meaning of terms like
√
2, let alone π, would be hard to

reconcile with a founding father of higher dimensional geometry. Indeed,

most of Kronecker’s contemporary geometers surely read the Grundzüge,

if they read it at all, as if it referred to polynomials defined over the

complex numbers. On the other hand, a modern mathematician feels that

Kronecker’s theory lacks the tools for dealing in depth with the problems

of algebraic varieties. This raises questions about the response Kronecker’s

work could have elicited, and in pursuing them we shall find ourselves on

a route that does indeed lead from Max to Emmy Noether.

1. SURVEY OF THE EXISTING HISTORICAL LITERATURE

There may not be a large historical literature, but it is still desirable not

to regurgitate large amounts of it. I shall start therefore with Dieudonné’s

account of the two papers that Dedekind and Weber jointly and Kronecker

published in 1882, and with the ideas about divisors that they contain.

Dieudonné characterised these papers as opening up the whole analogy

between algebraic geometry and algebraic number theory, and with intro-

ducing many ideas of abstract algebra that have become central but which

in their day delayed reception of these works. As for Kronecker, Dieudonné

argued [1974, pp. 60–61] that in his Grundzüge he gave precise definitions

of the ideas of an irreducible variety and its dimension. (Dieudonné gave

no precise reference, but the idea of dimension — Stufe — is defined in

the Grundzüge, §10.) In order to give an intrinsic formulation of his ideas,
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Kronecker worked with ideals (which he called Modulsysteme) in polyno-

mial rings; irreducible subvarieties give rise to prime ideals. In refining

these ideas, Lasker [1905] obtained the primary decomposition theorem

which became central in any discussion of the subject.

In Dieudonné’s summary, the paper of Dedekind and Weber [1882] was

directed to the algebraic theory of Riemann surfaces. They started from

the field of functions associated to a Riemann surface, or, rather, from an

algebraic extension of the field C(z) of rational functions in one variable.

They introduced the concept of a discrete valuation (abstracting from the

concrete notion of the zeros and poles of a function on a Riemann surface)

and thus could associate a point set to the original field. Had they been

able to topologise this set they would have been able to complete the

circle and obtain a Riemann surface from a function field. But although

they could not do that, they were able to show that finite sets of points,

which they called polygons or divisors, and suitable equivalence classes

of these, enabled one to recapture the Riemann-Roch theorem in this

abstract setting. They did this by capturing at this abstract level the

relevant properties of meromorphic differentials and of the canonical

divisor, whence they could give a definition of the genus of the function

field.

Dieudonné’s account deals briskly with the first half of the paper where

Dedekind and Weber drew out the analogy between number fields and

function fields. Drawing on the work of their predecessors stretching back

over fifty years, they defined an integer in a function field as an element ω

which satisfies an equation of the form

ωe + b1ω
e−1 + · · ·+ be−1ω + be = 0

where the coefficients b1, . . . , be−1, be are polynomials in z. The integral

elements of a function field form a ring, which they denoted o. Ideals in

this ring are defined, and the standard operations on them introduced,

including divisibility: the ideal b divides the ideal a if and only if a

is a subset of b. A prime ideal is one that is only divisible by itself

and o. Dedekind and Weber showed that every ideal is a product of prime

ideals in a unique way, and that prime ideals correspond to points on the

Riemann surface. At this point they commented, not for the first time,

that the theory of divisibility was much simpler for number fields than

function fields, and that in this matter the analogy broke down.


