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NORMAL QUASI-ORDINARY SINGULARITIES

by

Fuensanta Aroca & Jawad Snoussi

Abstract. — We prove that any normal quasi-ordinary singularity is isomorphic to

the normalization of a complete intersection that we get from the group of the quasi-

ordinary projection. We give a new proof of the fact that any normal quasi-ordinary

singularity is a germ of a toric variety. We also study some particular aspects of these

singularities such as minimality, rationality and “cyclic quotient”.

Résumé(Singularités quasi-ordinaires normales). — Nous démontrons que toute sin-

gularité quasi-ordinaire normale est isomorphe à la normalisation d’une intersection

complète que l’on détermine à partir du groupe de la projection quasi-ordinaire. Nous

donnons une nouvelle preuve du fait qu’une singularité quasi-ordinaire normale est

un germe de variété torique. Nous étudions certains aspects de ces singularités : ra-

tionalité, minimalité et « quotient cyclique ».

1. Introduction

An analytic germ of dimension n is quasi-ordinary when it is a local covering of Cn,

unramified outside the coordinate hyperplanes. These singularities became a subject

of study with the so-called Jung’s method that led to the first resolution of surface

singularities.

They also appear as the “easiest” singularities. From different points of view they

are a generalization of curve singularities. They can all be parameterized à la Puiseux

([1] and [2]). For hypersurfaces, J. Lipman exhibited from the Puiseux parameteriza-

tion some characteristic exponents that determine the topological type of the embed-

ded singularity ([12], see also [10]). For general quasi-ordinary normal singularities

we refer to [7].

A full study of normal quasi-ordinary surfaces, linked with resolution of singularities

can be found in [3, III.5]. A part of this work is dedicated to study generalizations of

these results.
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We start by giving simple models for normal quasi-ordinary singularities: We prove

that they are all normalization of some simple singularities that we determine from

the group of the unramified covering they induce outside the coordinate hyperplanes.

Then we link these models with toric varieties and prove that a normal quasi-ordinary

singularity is a germ of an affine toric variety (see also [14, 2.3.4]).

As a corollary we prove that any local quasi-ordinary morphism of Cn is equivalent

to a morphism of the form (x1, . . . , xn) 7→ (xa1

1 , . . . , xan
n ), for some positive integers

a1, . . . , an.

We study the case of finite cyclic quotient singularities, and give examples of normal

quasi-ordinary singularities that are neither finite cyclic quotient nor minimal.

The authors would like to thank Alberto Verjovsky and Romain Bondil for fruitful

discussions during the preparation of this work.

2. The subgroup of a quasi-ordinary projection

Let (X, 0) be a reduced and irreducible germ of analytic space of dimension n and

let

(f, 0) : (X, 0) −→ (Cn, 0)

be a germ of finite morphism (i.e. proper with finite fibers).

Given a representative f : X → U of the germ (f, 0), there exists a nowhere dense

subset B of U such that the restriction of f to X rf−1(B) is locally biholomorphic; in

particular it is a topological covering of U r B (see [15, 12.9]). The smallest analytic

subset B of U with this property is called the branching locus of f . The map f is

called an analytic covering.

Definition 2.1. — Let (X, 0) be a germ of reduced and irreducible analytic space of

dimension n. The germ (X, 0) is quasi-ordinary if there exist a finite morphism

f : (X, 0) → (Cn, 0) and a local system of coordinates x1, . . . , xn in Cn such that the

branching locus of f is contained in the hypersurface of Cn defined by x1 · · ·xn = 0.

Such a morphism is called a quasi-ordinary projection.

Let (X, 0) be quasi-ordinary of dimension n and let f : X → U be a sufficiently

small representative of a quasi-ordinary projection; U being a poly-disk around the

origin in Cn. Choose a system of coordinates (x1, . . . , xn) in U , in such a way that

the branching locus of f is contained in the space H defined by x1 · · ·xn = 0.

Set U∗ = U r H and X∗ = X r f−1(H). The restricted map f : X∗ → U∗ is a

topological covering. The space U∗ is homeomorphic to the complex torus C∗n. Since

π1(U
∗) ' Zn is abelian, the image of the induced map f∗ : π1(X

∗, x) → π1(U
∗, u)

does not depend on the choice of x ∈ f−1(u); we will call this image the subgroup of f

and we will denote it by Γf .

We say that two analytic coverings f : X → U and f ′ : X ′ → U are equivalent if

there exists an analytic isomorphism h : X → X ′ such that f = f ′ ◦ h.
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Proposition 2.2. — Let (X, 0) and (X ′, 0) be normal quasi-ordinary germs. Two quasi-

ordinary projections f : (X, 0) → U and f ′ : (X ′, 0) → U are equivalent if and only if

Γf = Γf ′ .

Proof. — The topological coverings f : X∗ → U∗ and f ′ : X ′∗ → U∗ are equivalent

if and only if Γf = Γf ′ (see for example [13, th 6.6]). The isomorphism X∗ ' X ′∗

extends to X ' X ′ by the Riemann extension theorem for normal complex spaces

(see [15, 13.6]).

3. Some simple quasi-ordinary singularities

Let A := (ai,j)16i,j6n be an invertible lower triangular matrix with non-negative

integer entries and let m be a positive integer. Let XA,m be an irreducible com-

ponent of the space defined in C2n by the following equations in coordinates

(x1, . . . , xn, z1, . . . , zn):

(1)

zm
1 = x

a1,1

1
...

zm
n = x

an,1

1 · · ·xan,n

n

XA,m is of dimension n and contains the origin.

Consider the restriction to XA,m of the linear projection:

(x1, . . . , xn, z1, . . . , zn) 7−→ (x1, . . . , xn)

and denote it by fA,m.

The branching locus of the map fA,m is contained in the space defined by

x1x2 · · ·xn = 0. The space XA,m has then a quasi-ordinary singularity at the origin

and fA,m is a quasi-ordinary projection.

We will now compute the subgroup of fA,m.

Proposition 3.1. — Let A be an invertible lower triangular n × n-matrix with non-

negative integer entries and let m be a positive integer. An n-tuple b ∈ Zn is in the

subgroup of the projection fA,m if and only if m divides all the entries of the vector Ab.

Proof. — The canonical isomorphism ϕ : Zn → π1(C
∗n, (1, . . . , 1)) is given by

ϕ(b1, . . . , bn)(t) = (eb12iπt, . . . , ebn2iπt).

The lifting of ϕ(b1, . . . , bn) with base point (1, . . . , 1) is

L(b1,...,bn)(t) = (eb12iπt, . . . , ebn2iπt, e

Pn
j=1

a1,jbj

m
2iπt, . . . , e

Pn
j=1

an,jbj

m
2iπt).

It is a loop if and only if, for any 1 6 i 6 n,

m divides
n∑

j=1

ai,jbj .
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Corollary 3.2. — Let M be a lower triangular n×n-matrix with integer entries. Sup-

pose that the determinant of M is positive and that all the entries of the adjoint

of M are non-negative so that XAdj M,detM is well defined. Then, the subgroup of the

projection fAdj M,detM is the subgroup of Zn generated by the vector columns of M .

Proof. — An n-tuple b = (b1, . . . , bn) ∈ Zn belongs to the subgroup of Zn spanned by

the vector columns of M if and only if there exists a vector k ∈ Zn such that b = Mk.

Since M is invertible

k = M−1b =
1

detM
(Adj M)b

The right-hand side of the equality above has integer coordinates if and only if detM

divides all the entries of the product (Adj M)b.

4. Characterization by the subgroups of Zn

We will now see that any subgroup of Zn with finite index is the subgroup of a

quasi-ordinary projection of type fA,m.

Let Γ be a subgroup of Zn. There exists a system of generators u1, . . . , un of Γ such

that ui = (0, . . . , 0, ui,i, . . . , un,i). We can get such a system by considering first a

generator of Γ∩{0}×· · ·×{0}×Z, call it un, then a generator of Γ∩{0}×· · ·×{0}×Z×Z

and so on.

We will call such a system, a lower triangular system of generators. The matrix

M , whose columns are the vectors u1, . . . , un, is a lower triangular matrix.

Note that, by this process, the diagonal terms of M are unique up to a sign. If Γ

is of finite index, then the diagonal terms are non-zero. The non-diagonal ones are

determined up to a congruence modulo the diagonal term on their column ; therefore

they can be chosen all non-positive.

Because of the choice of the entries of M and by linear calculus, all the entries of

the adjoint matrix of M are non-negative integers.

Summarizing, we have:

Remark 4.1. — Let Γ ⊂ Zn be a subgroup of finite index. There exists an invertible

lower triangular matrix M such that, the adjoint of M has no negative entries and

the vector columns of M generate Γ.

We can then define a space XAdj M,detM as in (1). By corollary 3.2, the subgroup

of the canonical quasi-ordinary projection fAdj M,detM is precisely Γ.

Thus any subgroup of Zn of finite index is the subgroup of a morphism of the

type fA,m : XA,m → Cn. Moreover A can be chosen to be lower triangular and

m = n−1
√

det A.

Theorem 4.2. — For any germ (X, 0) of normal quasi-ordinary singularity of dimen-

sion n there exists a lower triangular matrix A of order n and a positive integer m such
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that (X, 0) is isomorphic to the normalization of an irreducible space XA,m defined as

in (1).

Proof. — Let Γ be the subgroup of a quasi-ordinary projection associated to (X, 0).

Let M be as in 4.1. By proposition 2.2, (X, 0) is isomorphic to the normalization of

(XAdj M,detM , 0).

Example 4.3. — Let Γ be the subgroup of Z2 generated by the lower triangular system

{(1,−1), (0, 2)}. Then any normal quasi-ordinary singularity of dimension 2 having

Γ as subgroup for some quasi-ordinary projection is isomorphic to the normalization

of an irreducible component of the space defined in C4 by:

z2
1 = x2

1

z2
2 = x1x2.

It is then isomorphic to the hypersurface of C3 defined by z2 = xy.

Remark 4.4. — Theorem 4.2 generalizes the well known result for normal quasi-

ordinary surfaces to normal quasi-ordinary singularities of any dimension and

codimension (see [3, p. 82]).

5. Affine Toric varieties

In this section we will show that any normal quasi-ordinary singularity is a toric

affine variety.

In [10], P. González Pérez proved theorem 5.2 stated below, for quasi-ordinary

hypersurfaces of C3. In his Ph.D. thesis [14, 2.3.4], P.Popescu-Pampu gave an other

proof for the same result, and as he says, his proof extends to general normal quasi-

ordinary singularities. We give here a “hand-made” proof of that theorem.

Let Γ be a subgroup of Zn of finite index. Let M be as in 4.1. If we call v1, . . . , vn

the rows of the matrix M−1, then (detM)vi is the ith row of the adjoint matrix

AdjM .

Recall that XAdj M,detM is an irreducible component of the space defined by the

ideal of C[X1, . . . , Xn, Z1, . . . Zn] generated by ZdetM
i = X(detM)vi , 1 6 i 6 n; where

X(a1,...,an) = Xa1

1 · · ·Xan
n .

Hence, the ring C[Xi, X
vj , 1 6 i, j 6 n] is isomorphic to the ring of regular func-

tions of XAdj M,detM . This leads us to speak about toric varieties.

We will introduce the main definitions and some properties of toric varieties that

we will use. For more details and proofs we refer to [9].

Given a subgroup Γ of Zn, we call the dual of Γ and denote by Γ∗ the group

Hom(Γ, Z). The intersection of Γ∗ with the positive orthant σ0 (:= (R>0)
n) is a

sub-semigroup of Zn.
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