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ARC-ANALYTICITY IS AN OPEN PROPERTY

by

Krzysztof Kurdyka & Laurentiu Paunescu

Abstract. — We prove that the locus of the points where a bounded continuous
subanalytic function is not arc-analytic, is a closed nowhere dense subanalytic set.
This shows that the property of being arc-analytic at a point, is an open property.

Résumé(L’arc-analyticité est une propriété ouverte). — Nous montrons que l’en-
semble de points où une fonction sous-analytique, bornée et continue n’est pas arc-
analytique est un ensemble sous-analytique fermé. Autrement dit : la propriété d’être
arc-analytique en un point est une propriété ouverte.

1. Introduction

Let U be an open subset of R
n. Following [9] we say that a map f : U → R

k

is arc-analytic if for any analytic arc α : (−ε, ε) → U , f ◦ α is also analytic. In

general arc-analytic maps are very far from being analytic, in particular there are

arc-analytic functions which are not subanalytic [11], not continuous [3], with a non-

discrete singular set [12]. Hence it is natural to consider only arc-analytic maps

with subanalytic graphs. Earlier T.-C. Kuo, motivated by equisingularity problems,

introduced in [8] the notion of blow-analytic functions, i.e., functions which become

analytic after a composition with appropriate proper bimeromorphic maps (e.g. a

composition of blowings up with smooth centers). Clearly any blow-analytic mapping

is arc-analytic and subanalytic. The converse holds in a slightly weaker form [2]

(see also [16]). Blow-analytic maps have been studied by several authors (see the

survey [4]). It is known that in general subanalytic and arc-analytic functions are

continuous [9], but not necessarily (locally) Lipschitz [4], [17].

The main result of this note is Theorem 3.1, which claims that the locus of the

points at which a bounded, continuous, subanalytic function f : U → R is not arc-

analytic, is a closed subanalytic subset of U . In other words, if f is analytic on any

germ of analytic arc at a given point a ∈ U , then f is arc-analytic in a neighbourhood

of a.
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This property is of interest if we deal with germs of arc-analytic functions. For

instance let us recall the main result of [13]. It states the following: if g is an arc-

analytic function, such that for some natural r the function f = gr is analytic, then g

is locally Lipschitz. Moreover, if r is less than the multiplicity of f , then g is C1.

Now, if we are interested in a local version of this result, thanks to our Theorem 3.1,

it is enough to check the arc-analyticity of g only on analytic arcs passing through a

given point.

The main tool in the proof of Theorem 3.1 is Parusiński’s Rectilinearization of

subanalytic function [16]. We thank the referee for careful reading and valuable

remarks.

2. Definitions – Notations

2.1. Locally blow-analytic functions. — We recall some of the notions used in

this paper (for more information see for instance [3], [4], [5], [8], [11], [12], [18]).

We recall first a definition of a local blowing up. Let M be an analytic manifold

and Ω ⊂ M an open set. Assume that X is an analytic submanifold of M , closed

in Ω. Then we can define the mapping τ : Ω̃ → Ω, the blowing up of Ω with the

centre X , see for instance [7] or [14]. A restriction of τ to an open subset of Ω̃ is

called a local blowing up with a smooth (nowhere dense) centre. Local blowings up

have the important arc lifting property. We state it precisely below:

Lemma 2.1(Arc lifting property) . — Let M be an analytic manifold and let σ : W→M

be a finite composition of local blowings up with smooth centres. Assume that

γ : (−ε, ε) →M is an analytic arc, γ((−ε, ε)) ⊂ σ(W ). Then there exists an analytic

arc γ̃ : (−ε, ε) →W such that σ ◦ γ̃ = γ.

Let U be a neighbourhood of the origin of R
n and let f : U → R

m denote a map

defined on U except possibly some thin subset of U . We say that f is locally blow-

analytic via a locally finite collection of analytic modifications σα : Wα → R
n, if for

each α we have

i) Wα is isomorphic to R
n and σα is the composition of finitely many local blowings

up with smooth nowhere dense centres, and f ◦ σα has an analytic extension on Wα.

ii) There are subanalytic compact subsets Kα ⊂ Wα such that
⋃
σα(Kα) is a

neighbourhood of U .

The notion of (locally) blow-analytic functions (or maps) is very much related to the

notion of arc-analytic functions, i.e., functions f : U → R such that f ◦ α is analytic

for any analytic arc α : I → U , here U is an open subset of R
n and I is an open

interval. Indeed in [2], see also [16], it is proved that an arc-analytic function has

subanalytic graph if and only if it is locally blow-analytic.
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Let f : U → R be a subanalytic function defined in an open subset of R
n. We

will say that f is not arc-analytic at a point x ∈ U , if there exists an analytic arc

γ : (−ε, ε) → U such that γ(0) = x and the composed function f ◦ γ is not analytic

at t = 0.

3. Main Results

Our main result is the following theorem.

Theorem 3.1. — Let f : U → R be a bounded continuous subanalytic function defined

in an open subset of R
n. Then the locus of the points in U at which f is not arc-

analytic, is a closed, nowhere dense, subanalytic subset of U .

Remark 3.2. — If f is semialgebraic, then the locus of the points in U at which f is

not arc-analytic, is a closed, nowhere dense, semialgebraic subset of U .

Proof. — Let us denote

Snaa(f) = {x ∈ U | f is not arc-analytic at x}.

Clearly the set Snaa(f) is contained in the singular set of f :

Sna(f) = {x ∈ U | f is not analytic at x}.

It is known ([19], [10], [1]), that the set Sna(f) is subanalytic, closed and nowhere

dense in U (i.e., dimSna(f) 6 n − 1). However, in general, the set Sna(f) is larger

than the set Snaa(f). Our proof follows an idea from [10] and it uses some facts on

subanalytic functions of one variable.

Lemma 3.3. — A subanalytic (and continuous) function in one variable f ◦ γ is not

analytic at 0 ∈ R for one of the following two reasons:

i) Puiseux expansion f ◦ γ(t) =
∑∞

ν=0
aνt

ν/r, t > 0 contains a nonzero term with

a fractional exponent. Hence f ◦ γ(t), t > 0 cannot be extended analytically through

0 ∈ R. Clearly, the same obstruction may come from extending of f ◦ γ(t), t < 0.

ii) Both functions g+ = f ◦ γ(t), t > 0 and g− = f ◦ γ(t), t < 0 have analytic

extensions through 0, but the extensions of g+ and g− are not equal.

Proof. — Immediate from the existence of Puiseux expansions for g+ and g−.

The main tool in the proof of our theorem is the Rectilinearization of subanalytic

functions due to Parusiński [16], [15]. In fact, this is a stronger version of Hironaka’s

Rectilinearization Theorem ([7], see also [1]). For the reader’s convenience we recall

it here.

Theorem 3.4(Parusiński [16]). — Let f : U → R be a bounded continuous subanalytic

function defined in an open subset of R
n. Then there exists a locally finite collection Ψ

of real analytic morphisms φα : Wα → R
n such that:
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i) each Wα is isomorphic to R
n and there are compact subsets Kα ⊂Wα such that

⋃
φα(Kα) = U

. ii) for each α, there exists ri ∈ N, i = 1, . . . , n, such that

φα = σα ◦ ψα,

where σα : Vα → R
n, Vα isomorphic to R

n, is the composition of finite sequence of

local blowings up with smooth centres and

(3.1) ψα = (ε1x
r1

1 , ε2x
r2

2 , . . . , εnx
rn

n ), for some εi = −1 or 1.

iii) for each α, φα(Wα) ⊂ U , and f ◦φα extends from φ−1
α (U) on Wα to one of the

following functions:

a) the function identically equal to zero,

b) a normal crossings.

iv) if φα = σα ◦ ψα ∈ Ψ and φα(0) ∈ U , then φα(Wα) ⊂ U and for each ψ as in

(3.1) (i.e. with all possible εi, but fixed ri), the composition σα ◦ ψ ∈ Ψ.

Remark 3.5. — The original statement of Theorem 2.7 in [16] contains an inaccuracy:

at (i) it is claimed that
⋃
φα(Kα) is a neighbourhood of U , but in fact the family

φα(Kα) is only a covering of U . However the set
⋃
σα(Kα) is actually a neighbourhood

of U . Note that, as stated in theorem 2.7 in [16], in the claim (iii) we have also the

third possibility, namely that f ◦ φα extends to an inverse of normal crossing. But

this will not happen in our case since we consider only bounded functions.

We consider now a composed function gα = f ◦ σα : σ−1
α (U) → R. Let Qα be

an open quadrant in Vα = R
n. Note that by (iii) in the above theorem the function

gα = f ◦σα extends analytically on Qα. For simplicity we denote this extension again

by gα, observe that this extension is subanalytic.

We will study the arc-analyticity of our subanalytic function gα : Qα → R also at

the points of the boundary of Qα. To this end we denote by S+
naa(gα) the set of points

x ∈ Vα, such that there exists an analytic arc

γ : (−ε, ε) −→ Vα, γ(0) = x, γ(0, ε) ⊂ Qα,

and such that gα ◦ γ(t), t > 0, cannot be extended analytically on (−ε′, ε), for any

ε′ > 0.

We have the following lemma.

Lemma 3.6. — The set S+
naa(gα) is a closed subanalytic, nowhere dense, subset of Vα.

Proof. — Clearly S+
naa(gα) ⊂ Qα r Qα. We may assume that Qα is the set

{xi > 0 | i = 1, . . . , n}. Recall that gα is analytic on this quadrant, hence S+
naa(gα)

will be contained in its boundary.

By Theorem 3.4, there are integers ri ∈ N, i = 1, . . . , n, such that

(3.2) hα = gα(xr1

1 , x
r2

2 , . . . , x
rn

n ),
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extends to an analytic function on Wα = R
n. Let us denote by Hi the hy-

perplane {xi = 0}. Since our function gα is analytic on the first quadrant

{xi > 0 | i = 1, . . . , n}, then clearly we have S+
naa(gα) ⊂

⋃n
i=1

H
+

i , where H+
i =

{x ∈ Hi; xj > 0, j ∈ {1, . . . , n} r {i}} is an open quadrant in Hi. Let us consider

fixed quadrant H
+

1 = {x1 = 0; xj > 0, j ∈ {2, . . . , n}}. Now we have a Puiseux

expansion (which follows from (3.2))

(3.3) gα(x1, x
′) =

∞∑

ν=0

aν(x′)x
ν/r1

1 , ν, r1 ∈ N,

for x′ = (x2, . . . , xn) and x1 such that xi > 0, i = 1, . . . , n. Moreover, aν are analytic

functions in H+
1 such that aν(xr2

2 , . . . , x
rn

n ) extend to analytic functions.

Let (0, x′) ∈ H+
1 . The following observations are immediate consequences of (3.3):

i) if there is an open (in H+
1 ) neighbourhood Ω of x′ such that aν = 0 in Ω, for all

ν ∈ N r r1N, then x′ /∈ S+
naa(gα), (more precisely Ω ∩ S+

naa(gα) = ∅).

ii) if there exists ν0 ∈ N r r1N such that aν0
(x′) 6= 0, then gα cannot be extended,

through x1 = 0, on the arc (linear segment) x1 → (x1, x
′). Therefore then (0, x′) ∈

S+
naa(gα).

Observe that in the first case we may assume that Ω = H+
1 , since all aν are analytic

functions in H+
1 . So in this case H+

1 ∩ S+
naa(gα) = ∅.

So we are left with the second case. We shall prove that

(∗) H1 ∩ S
+
naa(gα) = H1 ∩Qα.

Note that here we are in the hyperplane H1 and not in the open quadrant H+
1 . By

i), ii) and (∗) it follows that S+
naa(gα) is closed and subanalytic.

To prove (∗) we denote by ν0 the smallest ν ∈ Nrr1N such that aν 6≡ 0 in H+
1 . Let

(0, x′) ∈ H
+

1 , if aν0
(x′) 6= 0, then by ii), (0, x′) ∈ S+

naa(gα). Assume that aν0
(x′) = 0.

Let η(t), t ∈ (−ε, ε) be an analytic arc in H1 such that η(0) = x′ and η(t) ∈ H+
1 ,

aν0
(η(t)) 6= 0 for t ∈ (0, ε). Let r be the smallest common multiple of r2, . . . , rn. By

(ii) of Theorem 3.4 it follows that aν(η(tr)) is analytic at 0 ∈ R, for any ν ∈ N. For

simplicity we denote again η(tr) by η(t).

We are going to choose a suitable exponent N ∈ N such that on the arc

γ(t) = (tN , η(t)), t > 0,

the function gα cannot be analytically extended through 0. Note that, if we substract

in (3.3), all terms aν(x′)x
ν/r1

1 with ν < ν0, the set S+
naa(gα) remains the same (indeed

all these terms are analytic in Vα). So we may assume that in (3.3) we have only

terms for ν > ν0. Hence we obtain the Puiseux expansion

(3.4) gα(tN , η(t)) =

∞∑

ν=ν0

aν(η(t))tνN/r1 , t > 0.
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