ARC-ANALYTICITY IS AN OPEN PROPERTY

by

Krzysztof Kurdyka & Laurentiu Paunescu

Abstract. — We prove that the locus of the points where a bounded continuous subanalytic function is not arc-analytic, is a closed nowhere dense subanalytic set. This shows that the property of being arc-analytic at a point, is an open property.

Résumé (L'arc-analyticité est une propriété ouverte). — Nous montrons que l'ensemble de points où une fonction sous-analytique, bornée et continue n'est pas arcanalytique est un ensemble sous-analytique fermé. Autrement dit : la propriété d'être arc-analytique en un point est une propriété ouverte.

1. Introduction

Let U be an open subset of \mathbb{R}^n . Following [9] we say that a map $f: U \to \mathbb{R}^k$ is arc-analytic if for any analytic arc $\alpha : (-\varepsilon, \varepsilon) \to U$, $f \circ \alpha$ is also analytic. In general arc-analytic maps are very far from being analytic, in particular there are arc-analytic functions which are not subanalytic [11], not continuous [3], with a nondiscrete singular set [12]. Hence it is natural to consider only arc-analytic maps with subanalytic graphs. Earlier T.-C. Kuo, motivated by equisingularity problems, introduced in [8] the notion of blow-analytic functions, *i.e.*, functions which become analytic after a composition with appropriate proper bimeromorphic maps (e.g. a composition of blowings up with smooth centers). Clearly any blow-analytic mapping is arc-analytic and subanalytic. The converse holds in a slightly weaker form [2] (see also [16]). Blow-analytic maps have been studied by several authors (see the survey [4]). It is known that in general subanalytic and arc-analytic functions are continuous [9], but not necessarily (locally) Lipschitz [4], [17].

The main result of this note is Theorem 3.1, which claims that the locus of the points at which a bounded, continuous, subanalytic function $f: U \to \mathbb{R}$ is not arc-analytic, is a closed subanalytic subset of U. In other words, if f is analytic on any germ of analytic arc at a given point $a \in U$, then f is arc-analytic in a neighbourhood of a.

© Séminaires et Congrès 10, SMF 2005

²⁰⁰⁰ Mathematics Subject Classification. — 32B20, 14P20.

Key words and phrases. — Subanalytic, arc-analytic, blow-analytic, rectlinearization.

This property is of interest if we deal with germs of arc-analytic functions. For instance let us recall the main result of [13]. It states the following: if g is an arc-analytic function, such that for some natural r the function $f = g^r$ is analytic, then g is locally Lipschitz. Moreover, if r is less than the multiplicity of f, then g is C^1 . Now, if we are interested in a local version of this result, thanks to our Theorem 3.1, it is enough to check the arc-analyticity of g only on analytic arcs passing through a given point.

The main tool in the proof of Theorem 3.1 is Parusiński's *Rectilinearization of subanalytic function* [16]. We thank the referee for careful reading and valuable remarks.

2. Definitions – Notations

2.1. Locally blow-analytic functions. — We recall some of the notions used in this paper (for more information see for instance [3], [4], [5], [8], [11], [12], [18]).

We recall first a definition of a local blowing up. Let M be an analytic manifold and $\Omega \subset M$ an open set. Assume that X is an analytic submanifold of M, closed in Ω . Then we can define the mapping $\tau : \widetilde{\Omega} \to \Omega$, the blowing up of Ω with the centre X, see for instance [7] or [14]. A restriction of τ to an open subset of $\widetilde{\Omega}$ is called a local blowing up with a smooth (nowhere dense) centre. Local blowings up have the important arc lifting property. We state it precisely below:

Lemma 2.1 (Arc lifting property). — Let M be an analytic manifold and let $\sigma : W \to M$ be a finite composition of local blowings up with smooth centres. Assume that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an analytic arc, $\gamma((-\varepsilon, \varepsilon)) \subset \sigma(W)$. Then there exists an analytic arc $\tilde{\gamma} : (-\varepsilon, \varepsilon) \to W$ such that $\sigma \circ \tilde{\gamma} = \gamma$.

Let U be a neighbourhood of the origin of \mathbb{R}^n and let $f: U \to \mathbb{R}^m$ denote a map defined on U except possibly some thin subset of U. We say that f is *locally blowanalytic* via a locally finite collection of analytic modifications $\sigma_{\alpha}: W_{\alpha} \to \mathbb{R}^n$, if for each α we have

i) W_{α} is isomorphic to \mathbb{R}^n and σ_{α} is the composition of finitely many local blowings up with smooth nowhere dense centres, and $f \circ \sigma_{\alpha}$ has an analytic extension on W_{α} .

ii) There are subanalytic compact subsets $K_{\alpha} \subset W_{\alpha}$ such that $\bigcup \sigma_{\alpha}(K_{\alpha})$ is a neighbourhood of \overline{U} .

The notion of *(locally) blow-analytic* functions (or maps) is very much related to the notion of *arc-analytic* functions, *i.e.*, functions $f: U \to \mathbb{R}$ such that $f \circ \alpha$ is analytic for any analytic arc $\alpha : I \to U$, here U is an open subset of \mathbb{R}^n and I is an open interval. Indeed in [2], see also [16], it is proved that an *arc-analytic* function has *subanalytic* graph if and only if it is *locally blow-analytic*.

Let $f: U \to \mathbb{R}$ be a subanalytic function defined in an open subset of \mathbb{R}^n . We will say that f is not arc-analytic at a point $x \in U$, if there exists an analytic arc $\gamma: (-\varepsilon, \varepsilon) \to U$ such that $\gamma(0) = x$ and the composed function $f \circ \gamma$ is not analytic at t = 0.

3. Main Results

Our main result is the following theorem.

Theorem 3.1. — Let $f: U \to \mathbb{R}$ be a bounded continuous subanalytic function defined in an open subset of \mathbb{R}^n . Then the locus of the points in U at which f is not arcanalytic, is a closed, nowhere dense, subanalytic subset of U.

Remark 3.2. — If f is semialgebraic, then the locus of the points in U at which f is not arc-analytic, is a closed, nowhere dense, semialgebraic subset of U.

Proof. — Let us denote

 $S_{\text{naa}}(f) = \{x \in U \mid f \text{ is not arc-analytic at } x\}.$

Clearly the set $S_{naa}(f)$ is contained in the singular set of f:

 $S_{\text{na}}(f) = \{x \in U \mid f \text{ is not analytic at } x\}.$

It is known ([19], [10], [1]), that the set $S_{na}(f)$ is subanalytic, closed and nowhere dense in U (*i.e.*, dim $S_{na}(f) \leq n-1$). However, in general, the set $S_{na}(f)$ is larger than the set $S_{naa}(f)$. Our proof follows an idea from [10] and it uses some facts on subanalytic functions of one variable.

Lemma 3.3. — A subanalytic (and continuous) function in one variable $f \circ \gamma$ is not analytic at $0 \in \mathbb{R}$ for one of the following two reasons:

i) Puiseux expansion $f \circ \gamma(t) = \sum_{\nu=0}^{\infty} a_{\nu} t^{\nu/r}$, t > 0 contains a nonzero term with a fractional exponent. Hence $f \circ \gamma(t)$, t > 0 cannot be extended analytically through $0 \in \mathbb{R}$. Clearly, the same obstruction may come from extending of $f \circ \gamma(t)$, t < 0.

ii) Both functions $g_+ = f \circ \gamma(t)$, t > 0 and $g_- = f \circ \gamma(t)$, t < 0 have analytic extensions through 0, but the extensions of g_+ and g_- are not equal.

Proof. — Immediate from the existence of Puiseux expansions for g_+ and g_- .

The main tool in the proof of our theorem is the *Rectilinearization of subanalytic functions* due to Parusiński [16], [15]. In fact, this is a stronger version of Hironaka's *Rectilinearization Theorem* ([7], see also [1]). For the reader's convenience we recall it here.

Theorem 3.4 (Parusiński [16]). — Let $f: U \to \mathbb{R}$ be a bounded continuous subanalytic function defined in an open subset of \mathbb{R}^n . Then there exists a locally finite collection Ψ of real analytic morphisms $\phi_{\alpha}: W_{\alpha} \to \mathbb{R}^n$ such that:

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

i) each W_{α} is isomorphic to \mathbb{R}^n and there are compact subsets $K_{\alpha} \subset W_{\alpha}$ such that

 $\bigcup \phi_{\alpha}(K_{\alpha}) = \overline{U}$

· ii) for each α , there exists $r_i \in \mathbb{N}, i = 1, \dots, n$, such that

 $\phi_{\alpha} = \sigma_{\alpha} \circ \psi_{\alpha},$

where $\sigma_{\alpha}: V_{\alpha} \to \mathbb{R}^n, V_{\alpha}$ isomorphic to \mathbb{R}^n , is the composition of finite sequence of local blowings up with smooth centres and

(3.1)
$$\psi_{\alpha} = (\varepsilon_1 x_1^{r_1}, \varepsilon_2 x_2^{r_2}, \dots, \varepsilon_n x_n^{r_n}), \text{ for some } \varepsilon_i = -1 \text{ or } 1.$$

iii) for each α , $\phi_{\alpha}(W_{\alpha}) \subset \overline{U}$, and $f \circ \phi_{\alpha}$ extends from $\phi_{\alpha}^{-1}(U)$ on W_{α} to one of the following functions:

a) the function identically equal to zero,

b) a normal crossings.

iv) if $\phi_{\alpha} = \sigma_{\alpha} \circ \psi_{\alpha} \in \Psi$ and $\phi_{\alpha}(0) \in U$, then $\phi_{\alpha}(W_{\alpha}) \subset U$ and for each ψ as in (3.1) (i.e. with all possible ε_i , but fixed r_i), the composition $\sigma_{\alpha} \circ \psi \in \Psi$.

Remark 3.5. — The original statement of Theorem 2.7 in [16] contains an inaccuracy: at (i) it is claimed that $\bigcup \phi_{\alpha}(K_{\alpha})$ is a neighbourhood of \overline{U} , but in fact the family $\phi_{\alpha}(K_{\alpha})$ is only a covering of \overline{U} . However the set $\bigcup \sigma_{\alpha}(K_{\alpha})$ is actually a neighbourhood of \overline{U} . Note that, as stated in theorem 2.7 in [16], in the claim (iii) we have also the third possibility, namely that $f \circ \phi_{\alpha}$ extends to an inverse of normal crossing. But this will not happen in our case since we consider only bounded functions.

We consider now a composed function $g_{\alpha} = f \circ \sigma_{\alpha} : \sigma_{\alpha}^{-1}(U) \to \mathbb{R}$. Let Q_{α} be an open quadrant in $V_{\alpha} = \mathbb{R}^n$. Note that by (iii) in the above theorem the function $g_{\alpha} = f \circ \sigma_{\alpha}$ extends analytically on Q_{α} . For simplicity we denote this extension again by g_{α} , observe that this extension is subanalytic.

We will study the arc-analyticity of our subanalytic function $g_{\alpha} : Q_{\alpha} \to \mathbb{R}$ also at the points of the boundary of Q_{α} . To this end we denote by $S^+_{\text{naa}}(g_{\alpha})$ the set of points $x \in V_{\alpha}$, such that there exists an analytic arc

$$\gamma: (-\varepsilon, \varepsilon) \longrightarrow V_{\alpha}, \quad \gamma(0) = x, \ \gamma(0, \varepsilon) \subset Q_{\alpha},$$

and such that $g_{\alpha} \circ \gamma(t)$, t > 0, cannot be extended analytically on $(-\varepsilon', \varepsilon)$, for any $\varepsilon' > 0$.

We have the following lemma.

Lemma 3.6. — The set $S^+_{naa}(g_\alpha)$ is a closed subanalytic, nowhere dense, subset of V_α .

Proof. — Clearly $S_{\text{naa}}^+(g_\alpha) \subset \overline{Q_\alpha} \smallsetminus Q_\alpha$. We may assume that Q_α is the set $\{x_i > 0 \mid i = 1, \ldots, n\}$. Recall that g_α is analytic on this quadrant, hence $S_{\text{naa}}^+(g_\alpha)$ will be contained in its boundary.

By Theorem 3.4, there are integers $r_i \in \mathbb{N}$, $i = 1, \ldots, n$, such that

(3.2)
$$h_{\alpha} = g_{\alpha}(x_1^{r_1}, x_2^{r_2}, \dots, x_n^{r_n}),$$

SÉMINAIRES & CONGRÈS 10

158

extends to an analytic function on $W_{\alpha} = \mathbb{R}^n$. Let us denote by H_i the hyperplane $\{x_i = 0\}$. Since our function g_{α} is analytic on the first quadrant $\{x_i > 0 \mid i = 1, \ldots, n\}$, then clearly we have $S_{\text{naa}}^+(g_{\alpha}) \subset \bigcup_{i=1}^n \overline{H}_i^+$, where $H_i^+ = \{x \in H_i; x_j > 0, j \in \{1, \ldots, n\} \setminus \{i\}\}$ is an open quadrant in H_i . Let us consider fixed quadrant $\overline{H}_1^+ = \{x_1 = 0; x_j \ge 0, j \in \{2, \ldots, n\}\}$. Now we have a Puiseux expansion (which follows from (3.2))

(3.3)
$$g_{\alpha}(x_1, x') = \sum_{\nu=0}^{\infty} a_{\nu}(x') x_1^{\nu/r_1}, \quad \nu, r_1 \in \mathbb{N},$$

for $x' = (x_2, \ldots, x_n)$ and x_1 such that $x_i > 0$, $i = 1, \ldots, n$. Moreover, a_{ν} are analytic functions in H_1^+ such that $a_{\nu}(x_2^{r_2}, \ldots, x_n^{r_n})$ extend to analytic functions.

Let $(0, x') \in H_1^+$. The following observations are immediate consequences of (3.3): i) if there is an open (in H_1^+) neighbourhood Ω of x' such that $a_{\nu} = 0$ in Ω , for all

 $\nu \in \mathbb{N} \setminus r_1\mathbb{N}$, then $x' \notin S^+_{\text{naa}}(g_\alpha)$, (more precisely $\Omega \cap S^+_{\text{naa}}(g_\alpha) = \emptyset$).

ii) if there exists $\nu_0 \in \mathbb{N} \setminus r_1\mathbb{N}$ such that $a_{\nu_0}(x') \neq 0$, then g_α cannot be extended, through $x_1 = 0$, on the arc (linear segment) $x_1 \to (x_1, x')$. Therefore then $(0, x') \in S^+_{\text{naa}}(g_\alpha)$.

Observe that in the first case we may assume that $\Omega = H_1^+$, since all a_{ν} are analytic functions in H_1^+ . So in this case $H_1^+ \cap S_{\text{naa}}^+(g_{\alpha}) = \emptyset$.

So we are left with the second case. We shall prove that

(*)
$$H_1 \cap S^+_{\text{naa}}(g_\alpha) = H_1 \cap \overline{Q_\alpha}.$$

Note that here we are in the hyperplane H_1 and not in the open quadrant H_1^+ . By i), ii) and (*) it follows that $S_{\text{naa}}^+(g_\alpha)$ is closed and subanalytic.

To prove (*) we denote by ν_0 the smallest $\nu \in \mathbb{N} \setminus r_1 \mathbb{N}$ such that $a_{\nu} \neq 0$ in H_1^+ . Let $(0, x') \in \overline{H}_1^+$, if $a_{\nu_0}(x') \neq 0$, then by ii), $(0, x') \in S_{\text{naa}}^+(g_\alpha)$. Assume that $a_{\nu_0}(x') = 0$. Let $\eta(t), t \in (-\varepsilon, \varepsilon)$ be an analytic arc in H_1 such that $\eta(0) = x'$ and $\eta(t) \in H_1^+$, $a_{\nu_0}(\eta(t)) \neq 0$ for $t \in (0, \varepsilon)$. Let r be the smallest common multiple of r_2, \ldots, r_n . By (ii) of Theorem 3.4 it follows that $a_{\nu}(\eta(t^r))$ is analytic at $0 \in \mathbb{R}$, for any $\nu \in \mathbb{N}$. For simplicity we denote again $\eta(t^r)$ by $\eta(t)$.

We are going to choose a suitable exponent $N \in \mathbb{N}$ such that on the arc

$$\gamma(t) = (t^N, \eta(t)), \quad t > 0,$$

the function g_{α} cannot be analytically extended through 0. Note that, if we substract in (3.3), all terms $a_{\nu}(x')x_1^{\nu/r_1}$ with $\nu < \nu_0$, the set $S^+_{\text{naa}}(g_{\alpha})$ remains the same (indeed all these terms are analytic in V_{α}). So we may assume that in (3.3) we have only terms for $\nu \ge \nu_0$. Hence we obtain the Puiseux expansion

(3.4)
$$g_{\alpha}(t^{N},\eta(t)) = \sum_{\nu=\nu_{0}}^{\infty} a_{\nu}(\eta(t))t^{\nu N/r_{1}}, \quad t > 0$$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005