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UNIMODAL SINGULARITIES AND

DIFFERENTIAL OPERATORS

by
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Abstract. — An algebraic local cohomology class attached to a hypersurface isolated

singularity is considered from the view point of algebraic analysis. A holonomic

system derived from first order differential equations associated to a cohomology

class and its solutions are studied. For the unimodal singularities case, it is shown

that the multiplicity of the holonomic system associated to the cohomology class,

which generates the dual space of Milnor algebra, is equal to two.

Résumé(Singularités unimodulaires et opérateurs différentiels). — On considère une

classe de cohomologie locale algébrique attachée à une hypersurface à singularités

isolées, du point de vue de l’analyse algébrique. On étudie le système holonome des

équations aux dérivées partielles du premier ordre associé à la classe de cohomologie

ainsi que ses solutions. On décrit une méthode générale pour examiner le système

holonome associé. Il est montré que, dans le cas de singularités isolées unimodales,

la multiplicité du système holonome associé à la classe génératrice de l’espace dual

de l’algèbre de Milnor est égale à deux. Une description explicite des solutions du

système holonome est donnée.

1. Introduction

We consider algebraic local cohomology classes attached to hypersurface isolated

singularities by using first order differential operators. The purpose is to clarify the dif-

ference between quasihomogeneity and non-quasihomogeneity of the sinuglarity from

a view point of D-modules theory.

In [3], we gave a characterization of quasihomogeneity of hypersurface isolated sin-

gularities based on D-modules theory. We considered an algebraic local cohomology

class attached to a given singularity which generates the dual space of Milnor alge-

bra, and an associated holonomic system derived from first order annihilators of the

cohomology class in consideration. We showed that the simplicity of the associated
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first order holonomic system is equivalent to the quasihomogeneity of the singular-

ity. For non-quasihomogeneous case, the structure of associated first order holonomic

system is not fully investigated. By putting the idea in [3] to practical use to non-

quasihomogeneous singularities, we consider relations between non-quasihomogeneous

singularities and a structure of first order holonomic systems. In this paper, we give a

practical method of computations. Applying the method, we give an explicit descrip-

tion of algebraic local cohomology solution space of the holonomic system in question

and also present a detailed result of computations on normal forms of exceptional

unimodal singularities.

In §2, we briefly recall the dual space of Milnor algebra with respect to the

Grothendieck local duality and introduce a holonomic system derived from differ-

ential operators of order at most one which annihilate a generator of the dual space.

In §3, we give a method for describing the solution space of the first order holo-

nomic system. We recall our results on the quasihomogeneous singularities and the

unimodal singularities concerning to the solution space of the holonomic system. We

show, for the unimodal singularities case, that the solution space of the holonomic

system derived from first order differential equations is of dimension two. In §4, we

give a method for examining semiquasihomogeneous singularities from the computa-

tional point of view. We show that the computation of the solution space of the first

order holonomic system can be carried out in finite dimensional vector spaces. In §5,

we give results of the computations for each normal form of exceptional unimodal

singularities. For proves of results stated in §2 and §3, please refer to [3].

2. The dual space of Milnor algebra and first order differential operators

Let X be an open neighborhood of the origin O in the n dimensional affine space Cn

and OX the sheaf of holomorphic functions on X . Let f(z) ∈ OX,O be a holomorphic

function on X with an isolated singularity at the origin O. Denote by I the ideal in

OX,O generated by the partial derivatives fj = ∂f(z)/∂zj (j = 1, . . . , n) of f(z):

I = 〈f1, . . . , fn〉O.

From the Grothendieck local duality, we have a non-degenerate perfect pairing

(1) Ωn
X,O/IΩn

X,O × ExtnOX,O
(OX,O/I,OX,O) → C

where Ωn
X is the sheaf of holomorphic differential n-forms on X . Let Σ be the space

of algebraic local cohomology classes annihilated by the ideal I:

Σ = {η ∈ Hn
[O](OX) | g(z)η = 0, g(z) ∈ I}.

We can identify the space Σ with Extn
OX,O

(OX,O/I,OX,O) as a finite dimensional

vector spaces over C. Then, by identifying Milnor algebra OX,O/I and Ωn
X,O/IΩn

X,O,

we find that the space Σ is the dual space of Milnor algebra.
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The space Σ is generated by a single cohomology class over OX,O. For instance,

one can take the cohomology class σf =

[

1

f1 . . . fn

]

∈ Hn
[O](OX) as a generator over

OX,O of Σ, where the notation

[

a

b1 · · · bn

]

for functions a, b1 · · · bn ∈ OX,O stands for

the algebraic local cohomology class associated to the residue symbol

[

a

b1 · · · bn

]

∈

Extn
OX,O

(OX,O/I,OX,O).

Let σ be a generator of Σ over OX,O :

Σ = OX,Oσ.

Since the algebraic local cohomology group Hn
[O](OX) has a structure of DX,O-module,

we can consider annihilators of σ in DX,O where DX is the sheaf of linear partial

differential operators.

Let Lf be the set of linear partial differential operators of order at most one which

annihilate σ:

Lf = {P =

n
∑

j=1

aj(z)
∂

∂zj

+ a0(z) | Pσ = 0, aj(z) ∈ OX,O, j = 0, 1, . . . , n}.

Let Ann
(1)
DX,O

(σ) be the left ideal in DX,O generated by Lf ; Ann
(1)
DX,O

(σ) = DX,OLf .

Then DX,O/Ann
(1)
DX,O

(σ) defines a holonomic DX module supported at the origin.

Let P ∈ Lf be a first order partial differential operator annihilating the algebraic

local cohomology class σ. Such an operator has the following property :

Lemma 2.1. — Let σ be a generator of Σ over OX,O. Let P be a first order linear

partial differential operator annihilating the cohomology class σ. Then, the space Σ

is closed under the action of P , i.e., P (Σ) ⊆ Σ.

It is obvious that the condition whether a given first order differential operator

acts on Σ or not depends only on its first order part. We introduce Θf to be the set

of differential operators of the form
∑n

j=1 aj(z)
∂

∂zj

acting on Σ. Then, an operator

v is in Θf if and only if v satisfies the condition vg(z) ∈ I for every g(z) ∈ I, i.e.,

Θf = {v =
n

∑

j=1

aj(z)
∂

∂zj

| vg(z) ∈ I,∀ g(z) ∈ I, aj(z) ∈ OX,O, j = 1, . . . , n}.

Lemma 2.2. — The mapping, from Lf to Θf , which associates the first order part

vp ∈ Θf to P ∈ Lf is a surjective mapping.

3. Solution space of the holonomic system

Let σ ∈ Σ be a generator of Σ over OX,O. Let η be another algebraic local

cohomology class in Σ and h(z) ∈ OX,O a holomorphic function satisfying η = h(z)σ.
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It is obvious that, to represent η ∈ Σ in the form η = hσ, it suffices to take the modulo

class h mod I of the holomorphic function h(z) ∈ OX,O. Let P be an annihilator of

σ in Lf . Now let us consider the condition that an algebraic local cohomology class

η ∈ Σ becomes a solution of homogeneous differential equation Pη = 0. An element

v ∈ Θf induces a linear operator acting on OX,O/I which is also denoted by v:

v : OX,O/I → OX,O/I.

For the first order part vP =
∑n

j=1 aj(z)∂/∂zj ∈ Θf of an annihilator P , we have

vP h =

n
∑

j=1

aj(z)
∂h

∂zj

= 0 mod I.

Let Hf be a set of modulo classes by I of functions h(z) that satisfies vh(z) ∈ I

for v ∈ Θf :

Hf = {h ∈ OX,O/I | vh = 0, ∀ v ∈ Θf}.

Concerning to the algebraic local cohomology solutions of the holonomic system

DX,O/Ann
(1)
DX,O

(σ), we have the following result ([3]):

Theorem 3.1. — Let f(z) be a function defining an isolated singularity at the origin.

Let σ ∈ Σ be a generator over OX,O of Σ. Then,

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) = {hσ | h ∈ Hf}.

The space Hf does not depend on a choice of a generator σ of Σ. Actu-

ally, the space Hf is completely determined by the ideal I. Thus, in this

sence, the space Hf is an intrinsic object in the study of the solution space

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)).

For the quasihomogeneous isolated singularity case, we have the following result

([3]) :

Proposition 3.2. — Let f(z) be a function defining a quasihomogeneous isolated sin-

gularity at the origin. Then

Hf = SpanC{1}.

Let AnnDX,O
(σ) be the left ideal in DX,O of annihilators of the cohomology class σ.

Theorem 3.3([3]). — Let f = f(z) be a function defining an isolated singularity at

the origin O and σ a generator of Σ. The following three conditions are equivalent :

(i) OX,O〈f, f1, · · · , fn〉 = OX,O〈f1, · · · , fn〉.

(ii) Ann
(1)
DX,O

(σ) = AnnDX,O
(σ).

(iii) HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) = SpanC{σ}.
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This result can be regarded as a counterpart in the algebraic local cohomology

theory of a result by K.Saito on a characterization of quasihomogeneity of singularities

([5]).

In contrast, for a non-quasihomogeneous function f = f(z),

(2) OX,O〈f1, . . . , fn〉 6= OX,O〈f, f1, . . . , fn〉

and thus

dimHomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) > 2.

It seems natural to expect that the solution space

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX))

is related to non-quasihomogeneity of a given hypersurface isolated singularity. Let

us consider the structure of the solution spaces for exceptional unimodal singularities

which are most typical non-quasihomogeneous singularities.

We have the following result :

Proposition 3.4. — For a function f(z) defining an exceptional unimodal singularity,

Hf = SpanC{1, f mod I}.

Proposition 3.4 is proved by direct computations for each normal form of excep-

tional unimodal singularities. We shall explain a method we used for computations

in the next section.

We arrive at the following theorem ([6]):

Theorem 3.5. — Let f(z) be a function defining an exceptional unimodal singularity.

Then,

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) = SpanC{σ, δ},

where δ is the delta function with support at the origin O.

Proof. — Theorem 3.1 together with Proposition 3.4 yields that the solution space

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) is spanned by σ and fσ. Since the ideal

quotient I : 〈f〉 is the maximal ideal m in OX,O for any exceptional unimodal singu-

larities, the cohomology class fσ is annihilated by m. This implies that fσ = const.δ

where δ =

[

1

z1 · · · zn

]

. It completes the proof.

We note here that it is possible to characterize the cohomology class σ attached to

an exceptional unimodal (and bimodal) singularity as the solution of a second order

holonomic system. We shall treat this subject elsewhere.
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