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A SURVEY ON ALEXANDER POLYNOMIALS

OF PLANE CURVES

by

Mutsuo Oka

Abstract. — In this paper, we give a brief survey on the fundamental group of the

complement of a plane curve and its Alexander polynomial. We also introduce the

notion of θ-Alexander polynomials and discuss their basic properties.

Résumé(Un état des lieux sur les polynômes d’Alexander des courbesplanes)
Dans cet article, nous donnons un bref état des lieux sur le groupe fondamental du

complémentaire d’une courbe plane et son polynôme d’Alexander. Nous introduisons

de plus la notion de polynôme d’Alexander de type θ et discutons leurs propriétés

élémentaires.

1. Introduction

For a given hypersurface V ⊂ Pn, the fundamental group π1(P
n−V ) plays a crucial

role when we study geometrical objects over Pn which are branched over V . By the

hyperplane section theorem of Zariski [51], Hamm-Lê [16], the fundamental group

π1(P
n − V ) can be isomorphically reduced to the fundamental group π1(P

2 − C)

where P2 is a generic projective subspace of dimension 2 andC = V ∩P2. A systematic

study of the fundamental group was started by Zariski [50] and further developments

have been made by many authors. See for example Zariski [50], Oka [31–33], Libgober

[22]. For a given plane curve, the fundamental group π1(P
2−C) is a strong invariant

but it is not easy to compute. Another invariant which is weaker but easier to compute

is the Alexander polynomial ∆C(t). This is related to a certain infinite cyclic covering

space branched over C. Important contributions are done by Libgober, Randell, Artal,

Loeser-Vaquié, and so on. See for example [1, 2, 7, 9, 10, 13, 14, 20, 24, 26, 29, 41,

43,44,46,47]
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The main purpose of this paper is to give a survey for the study of the fundamental

group and the Alexander polynomial (§§2,3). However we also give a new result on

θ-Alexander polynomials in section 4.

In section two, we give a survey on the fundamental group of the complement of

plane curves. In section three, we give a survey for the Alexander polynomial. It turns

out that the Alexander polynomial does not tell much about certain non-irreducible

curves. A possibility of a replacement is the characteristic variety of the multiple

cyclic covering. This theory is introduced by Libgober [23].

Another possibility is the Alexander polynomial set (§4). For this, we consider the

infinite cyclic coverings branched over C which correspond to the kernel of arbitrary

surjective homomorphism θ : π1(C
2 − C) → Z and we consider the θ-Alexander

polynomial. Basic properties are explained in the section 4.

2. Fundamental groups

The description of this section is essentially due to the author’s lecture at School

of Singularity Theory at ICTP, 1991.

2.1. van Kampen Theorem.— Let C ⊂ P2 be a projective curve which is defined

by C = {[X,Y, Z] ∈ P2 | F (X,Y, Z) = 0} where F (X,Y, Z) is a reduced homogeneous

polynomial F (X,Y, Z) of degree d. The first systematic studies of the fundamental

group π1(P
2 − C) were done by Zariski [49–51] and van Kampen [18]. They used

so called pencil section method to compute the fundamental group. This is still one

of the most effective method to compute the fundamental group π1(P
2 −C) when C

has many singularities.

Let `(X,Y, Z), `′(X,Y, Z) be two independent linear forms. For any τ = (S, T ) ∈

P1, let Lτ = {[X,Y, Z] ∈ P2 | T `(X,Y, Z) − S`′(X,Y, Z) = 0}. The family of lines

L = {Lτ | τ ∈ P1} is called the pencil generated by L = {` = 0} and L′ = {`′ = 0}.

Let {B0} = L ∩ L′. Then B0 ∈ Lτ for any τ and it is called the base point of the

pencil. We assume that B0 /∈ C. Lτ is called a generic line (resp. non-generic line)

of the pencil for C if Lτ and C meet transversally (resp. non-transversally). If Lτ

is not generic, either Lτ passes through a singular point of C or Lτ is tangent to C

at some smooth point. We fix two generic lines Lτ0
and Lτ∞

. Hereafter we assume

that τ∞ is the point at infinity ∞ of P1 (so τ∞ = ∞) and we identify P2 − L∞ with

the affine space C2. We denote the affine line Lτ − {B0} by La
τ . Note that La

τ
∼= C.

The complement Lτ0
− Lτ0

∩ C (resp. La
τ0

− La
τ0

∩ C) is topologically S2 minus d

points (resp. (d + 1) points). We usually take b0 = B0 as the base point in the case

of π1(P
2 −C). In the affine case π1(C

2 −C), we take the base point b0 on Lτ0
which

is sufficiently near to B0 but b0 6= B0. Let us consider two free groups

F1 = π1(Lτ0
− Lτ0

∩C, b0) and F2 = π1(L
a
τ0

− La
τ0

∩ C, b0).
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of rank d− 1 and d respectively. We consider the set

Σ := {τ ∈ P1 | Lτ is a non-generic line} ∪ {∞}.

We put ∞ in Σ so that we can treat the affine fundamental group simultaneously.

We recall the definition of the action of the fundamental group π1(P
1 − Σ, τ0) on F1

and F2. We consider the blowing up P̃2 of P2 at B0. P̃2 is canonically identified with

the subvariety

W = {((X,Y, Z), (S, T )) ∈ P2 × P1 | T `(X,Y, Z)− S`′(X,Y, Z) = 0}

through the first projection p : W → P2. Let q : W → P1 be the second projection.

The fiber q−1(s) is canonically isomorphic to the line Ls. Let E = {B0} × P1 ⊂

W . Note that E is the exceptional divisor of the blowing-up p : W → P2 and

q|E : E → P1 is an isomorphism. We take a tubular neighbourhood NE of E which

can be identified with the normal bundle of E. As the projection q|NE → P1 gives a

trivial fibration over P1 −{∞}, we fix an embedding φ : ∆× (P1 −{∞}) → NE such

that φ(0, η) = (B0, η), φ(1, τ0) = (b0, τ0) and q(φ(t, η)) = η for any η ∈ P1 − {∞}.

Here ∆ = {t ∈ C; |t| 6 1}. In particular, this gives a section of q over C = P1 −{∞}

by η 7→ b0,η := φ(1, η) ∈ La
η. We take b0,η as the base point of the fiber La

η. Let

C̃ = p−1(C). The restrictions of q to C̃ and C̃ ∪ E are locally trivial fibrations by

Ehresman’s fibration theorem [48]. Thus the restrictions q1 := q|(W− eC) and q2 :=

q|(W− eC∪E) are also locally trivial fibrations over P1 − Σ. The generic fibers of q1, q2
are homeomorphic to Lτ0

− C and La
τ0

− C respectively. Thus there exists canonical

action of π1(P
1 − Σ, τ0) on F1 and F2. We call this action the monodromy action of

π1(P
1 − Σ, τ0). For σ ∈ π1(P

1 − Σ, τ0) and g ∈ F1 or F2, we denote the action of σ

on g by gσ. The relations in the group Fν

(R1) 〈g−1gσ = e | g ∈ Fν , σ ∈ π1(P
1 − Σ, τ0)〉, ν = 1, 2

are called the monodromy relations. The normal subgroup of Fν , ν = 1, 2 which

are normally generated by the elements {g−1gσ, | g ∈ Fν} are called the groups of

the monodromy relations and we denote them by Nν for ν = 1, 2 respectively. The

original van Kampen Theorem can be stated as follows. See also [5,6].

Theorem 1([18]). — The following canonical sequences are exact.

1 → N1 → π1(Lτ0
− Lτ0

∩ C, b0) → π1(P
2 − C, b0) → 1

1 → N2 → π1(L
a
τ0

− La
τ0

∩ C, b0) → π1(C
2 − C, b0) → 1

Here 1 is the trivial group. Thus the fundamental groups π1(P
2 − C, b0) and

π1(C
2 − C, b0) are isomorphic to the quotient groups F1/N1 and F2/N2 respectively.

For a group G, we denote the commutator subgroup of G by D(G). The relation

of the fundamental groups π1(P
2 − C, b0) and π1(C

2 − C, b0) are described by the

following. Let ι : C2 − C → P2 − C be the inclusion map.
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Lemma 2([30]). — Assume that L∞ is generic.

(1) We have the following central extension.

1 −→ Z
γ

−−→ π1(C
2 − C, b0)

ι#
−−−→ π1(P

2 − C, b0) −→ 1

A generator of the kernel Ker ι# of ι# is given by a lasso ω for L∞.

(2) Furthermore, their commutator subgroups coincide i.e., D(π1(C
2 − C)) =

D(π1(P
2 − C)).

Proof. — A loop ω is called a lasso for an irreducible curve D if ω is homotopic to

a path written as ` ◦ τ ◦ `−1 where τ is the boundary circle of a normal small disk

of D at a smooth point and ` is a path connecting the base point and τ [35]. For

the assertion (1), see [30]. We only prove the second assertion. Assume that C has

r irreducible components of degree d1, . . . , dr. The restriction of the homomorphism

ι# gives a surjective morphism ι# : D(π1(C
2 − C)) → D(π1(P

2 − C)). If there is

a σ ∈ Ker ι# ∩ D(π1(C
2 − C)), σ can be written as γ(ω)a for some a ∈ Z. As

ω corresponds to (d1, . . . , dr) in the homology H1(C
2 − C) ∼= Zr, σ corresponds to

(ad1, . . . , adr). As σ is assumed to be in the commutator group, this must be trivial.

That is, a = 0.

2.2. Examples of monodromy relations. — We recall several basic examples of

the monodromy relations. Let C be a reduced plane curve of degree d.

We consider a model curve Cp,q which is defined by yp − xq = 0 and we study

π1(C
2 − Cp,q). For this purpose, we consider the pencil lines x = t, t ∈ C. We

consider the local monodromy relations for σ, which is represented by the loop x =

ε(2πit), 0 6 t 6 1. We take local generators ξ0, ξ1, . . . , ξp−1 of π1(Lε, b0)) as in

Figure 1. Every loops are counter-clockwise oriented. It is easy to see that each point

of Cp,q ∩ Lε are rotated by the angle 2π × q/p. Let q = mp + q′, 0 6 q′ < p. Then

the monodromy relations are:

ξj(= ξσ
j ) =

{
ωmξj+q′ω−m, 0 6 j < p− q′

ωm+1ξj+q′−pω
−(m+1), p− q′ 6 j 6 p− 1

(R1)

ω = ξp−1 · · · ξ0.(R2)

The last relation in (R1) can be omitted as it follows from the other relations.

ξp−1 = ω(ξp−2 · · · ξ0)
−1

= ωωmξ−1
q′ ω

−m . . . ωmξ−1
p−1ω

−mωm+1ξ−1
0 ω−m−1 · · ·ωm+1ξ−1

q′−2ω
−m−1

= ωm+1ξq′−1ω
−m−1.

For the convenience, we introduce two groups G(p, q) and G(p, q, r).

G(p, q) := 〈ξ1, . . . , ξp, ω | R1, R2〉, G(p, q, r) := 〈ξ1, . . . , ξp, ω | R1, R2, R3〉
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ξ0

ξ1

ξ2

Figure 1. Generators

where R3 is the vanishing relation of the big circle ∂DR = {|y| = R}:

(R3) ωr = e.

Now the above computation gives the following.

Lemma 3. — We have π1(C
2 −Cp,q, b0) ∼= G(p, q) and π1(P

2 −Cp,q, b0) ∼= G(p, q, 1).

The groups of G(p, q) and G(p, q, r) are studied in [12,32]. For instance, we have

Theorem 4([32])

(i) Let s = gcd(p, q), p1 = p/s, q1 = q/s. Then ωq1 is the center of G(p, q).

(ii) Put a = gcd(q1, r). Then ωa is in the center of G(p, q, r) and has order r/a

and the quotient group G(p, q, r)/ < ωa > is isomorphic to Zp/s ∗ Za ∗ F (s− 1).

Corollary 5 ([32]). — Assume that r = q. Then G(p, q, q) = Zp1
∗ Zq1

∗ F (s − 1). In

particular, if gcd(p, q) = 1, G(p, q, q) ∼= Zp ∗ Zq.

Let us recall some useful relations which follow from the above model.

(I) Tangent relation. — Assume that C and L0 intersect at a simple point P with

intersection multiplicity p. Such a point is called a flex point of order p − 2 if p > 3

([50]). This corresponds to the case q = 1. Then the monodromy relation gives

ξ0 = ξ1 = · · · = ξp−1 and thus G(p, 1) ∼= Z. As a corollary, Zariski proves that

the fundamental group π1(P
2 − C) is abelian if C has a flex of order > d − 3. In

fact, if C has a flex of order at least d − 3, the monodromy relation is given by

ξ0 = · · · = ξd−2. On the other hand, we have one more relation ξd−1 . . . ξ0 = e. In

particular, considering the smooth curve defined by C0 = {Xd − Y d = Zd}, we get

that π1(P
2 − C) is abelian for a smooth plane curve C, as C can be joined to C0 by

a path in the space of smooth curves of degree d.

(II) Nodal relation. — Assume that C has an ordinary double point (i.e., a node) at

the origin and assume that C is defined by x2−y2 = 0 near the origin. This is the case

when p = q = 2. Then as the monodromy relation, we get the commuting relation:

ξ1ξ2 = ξ2ξ1. Assume that C has only nodes as singularities. The commutativity of
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