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AN EXPLICIT CYCLE REPRESENTING
THE FULTON-JOHNSON CLASS, I

by

Jean-Paul Brasselet, Jose Seade & Tatsuo Suwa

Abstract — For a singular hypersurface X in a complex manifold we prove, under
certain conditions, an explicit formula for the Fulton-Johnson classes in terms of
obstruction theory. In this setting, our formula is similar to the expression for the
Schwartz-MacPherson classes provided by Brasselet and Schwartz. We use, on the
one hand, a generalization of the virtual (or GSV) index of a vector field to the
case when the ambient space has non-isolated singularities, and on the other hand
a Proportionality Theorem for this index, similar to the one due to Brasselet and
Schwartz.

RésumégUne description explicite de la classe de Fulton Johnson).|—  Pour une hyper-
surface singuliere X d’une variété complexe, et dans certaines conditions, nous mon-
trons une formule explicite pour les classes de Fulton-Johnson en termes de théorie
d’obstruction. Dans ce contexte notre formule est similaire & I’expression des classes
de Schwartz-MacPherson donnée par Brasselet et Schwartz. Nous utilisons, d’une
part, une généralisation de 'indice virtuel (ou GSV-indice) d’un champs de vecteurs
au cas ou ’espace ambiant a des singularités non-isolées et, d’autre part, un Théoréme
de Proportionnalité pour cet indice, similaire & celui di & Brasselet et Schwartz.

1. Introduction

There are several different ways to generalize the Chern classes of complex man-
ifolds to the case of singular varieties. Among them are the Schwartz-MacPherson
classes [5, 16, 20] and the Fulton-Johnson classes [8, 9]. Each one of them is defined
in a relevant context and has its own interest and advantages. The construction in
[5, 20] provides a geometric interpretation of the Schwartz-MacPherson classes via
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obstruction theory. This approach is very useful for understanding what these classes
measure.

The motivation for this work is to give such a geometric interpretation of the Fulton-
Johnson classes, in the spirit of [5, 20]. Here we prove that if X C M is a singular
complex analytic hypersurface of dimension n, defined by a holomorphic function
on a manifold M, then the Fulton-Johnson classes can be regarded as “weighted”
Schwartz-MacPherson classes.

In order to explain our result more precisely, let us consider a complex analytic

[43

manifold M of dimension m, and a compact singular analytic subvariety X C M.
Let us endow M with a Whitney stratification adapted to X [24], and consider a
triangulation (K) of M compatible with the stratification. We denote by (D) a
cellular decomposition of M dual to (K). Let us notice that if the 2¢-cell d,, of (D)
meets X, it is dual of a 2(m — ¢)-simplex o, of (K) in X.

We recall that in her definition of Chern classes, M.H. Schwartz considers particular
stratified r-frames v" tangent to M, called radial frames. They have no singularity
on the (2¢g — 1)-skeleton of (D), with ¢ = m — r + 1, and isolated singularities on the
2g-cells d, at their barycenter {G,} = d, No,. Let us denote by I(v", ;) the index
of the r-frame v" at 7.

The result of [5] tells us that the Schwartz-MacPherson class ¢,_1(X) of X of
degree (r — 1) is represented in Hy(,_1)(X) by the cycle

E I(v",54) - 0q
0aCX,
dimoq=2(r—1)

In this article we prove:

Theorem 1.1 — Let us assume that X C M is a hypersurface, defined by X = f=1(0),
where f : M — D is a holomorphic function into an open disc around 0 in C. For each
point a € X let F, denote a local Milnor fiber, and let x(F,) be its Fuler-Poincaré
characteristic. Then the Fulton-Johnson class ¢’ (X) of X of degree (r — 1) is
represented in Hy._1)(X) by the cycle

(1.1) S B )I(,5a) 0
0aCX,
dimo,=2(r—1)

On the other hand, the question of understanding the difference between the
Schwartz-MacPherson and the Fulton-Johnson classes has been addressed by sev-
eral authors, and this led to the concept of Milnor classes, defined by p.(X) =
(=1)"! (eo(X) — ¢f7(X)), n = dim X, see for instance [1, 3, 19, 25]. Let us define
the local Milnor number of X at the point a € X by u(X,a) = (—1)" (1 — x(F,));
it coincides with the usual Milnor number of [17] when «a is an isolated singularity
of X. It is non zero only on the singular set X of X. We have the following immediate
consequence of Theorem 1.1:
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Corollary 1.2 — Under the assumptions of Theorem 1.1, the Milnor class p,.—1(X)
in Hyr—1)(X) is represented by the cycle

(1.2) > w(X.5a) I(,5a) - O
o CXE
dimo,=2(r—1)

One of the key ingredients we use for proving the Theorem 1.1 is a Proportionality
Theorem for the index of vector fields and frames on singular varieties, similar to the
one given in [5]. In order to establish it we were led to defining the local virtual index
at an isolated zero of a smooth vector field on a complex hypersurface with (possibly)
non-isolated singularities. This is a generalization of the indices defined previously in
[4, 12, 15]. We call it “local” virtual index to distinguish it from the “global” virtual
index at a whole component of the singular set, as studied in [4]

We notice that for hypersurfaces with isolated singularities one also has the homo-
logical index of [11], which coincides with the index in [12]. It would be interesting to
know whether our generalized virtual (or GSV) index coincides with the generalized
homological index in [10] when the ambient space has non-isolated singularities.

Our formulae can also be obtained in another way, using the MacPherson mor-
phism ¢, (see [16]) together with the Verdier specialization map of constructible
functions [23], since one knows (see for instance [19]) that the Fulton-Johnson and
the Milnor classes are image by the morphism ¢, of certain constructible functions.
The advantage of our construction here is to provide a geometric and explicit point
of view, which can be used to study the general case. This is being done in [6].

2. The local virtual index of a vector field

Let (X,0) be a hypersurface germ in an open set  C C"*!, defined by a holomor-
phic function f : (U4,0) — (C,0). Let us endow U with a Whitney stratification {V;}
compatible with X and let us consider the subspace E of the tangent bundle TU of U
consisting of the union of the tangent bundles of all the strata.:

(2.3) E=J1Vi
7

A section of TU whose image is in E is called a stratified vector field on U.

Let v be a stratified vector field on (X,0) with an isolated singularity (zero) at
0 € X. We want to define an index of v at 0 € X which coincides with the GSV -
index of [12] (or the virtual index in [4]) when 0 is also an isolated singularity of X.
For this, let us consider a (sufficiently small) ball B, around 0 € & and denote by T
the Milnor tube f~1(Ds) N B., where D; is a (sufficiently small) disc around 0 € C.
We let 97 be the “boundary” f~1(Cs) N B. of T, Cs = dDs.

Let r be the radial vector field in C whose solutions are straight lines converging
to 0. It can be lifted to a vector field 7 in 7, whose solutions are arcs that start in
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07 and finish in X; since the corresponding trajectories in C are transversal to all
the circles () around 0 € C of radius n €]0, [, it follows that the solutions of 7 are
transversal to all the tubes f~1(C,). This vector field 7 defines a C* retraction £
of 7 into X, with X as fixed point set. The restriction of £ to any fixed Milnor fibre
F = f~Y(to)N B., to € Cs, provides a continuous map 7 : F' — X, which is surjective
and it is C*° over the regular part of X. We call such map &, or also 7, a degenerating
map for X (this was called a “collapsing map” in [14]). Since the singular set ¥ of X
is a Zariski closed subset of X, we notice that we can choose the lifting 7 so that
71 (X,eg) is an open dense subset of F', where X,¢, is the regular part Xyes = X \ 2.

We want to use 7 to lift the stratified vector field v on X to a vector field on F.
Firstly, let us consider the case where X has an isolated singularity at 0. The map =
is a diffeomorphism restricted to a neighbourhood N C F of F N 0B.. Then v can
be lifted to a non-singular vector field on IV and extended to the interior of F' with
finitely many singularities, by elementary obstruction theory. By definition [12], the
total Poincaré-Hopf index of this vector field on F' is the GSV-index of v on X.

We want to generalize this construction to the case when the singularity of X at 0
is not necessarily isolated. Let us consider (X,0) as above, a possibly non-isolated
germ. We fix a Milnor fibre F = f~1(t,) N B. for some t, € Cs5. Given a point
x € F, we let v, be the solution of 7 that starts at z. The end-point of v, is the
point 7(z) € X. We parametrize this arc v, by the interval [0,1], with v,(0) = =
and v;(1) = m(xz). We assume that this interval [0, 1] is the straight arc in C going
from ¢, to 0, so that for each ¢ € [0, 1], the point 7, (¢) is in a unique Milnor fibre
F, = f~X(t) N B.. The family of tangent spaces to F; at the points 7, (t) defines a
1-parameter family of n-dimensional subspaces of C"*1, {T'F;}., ;). By [18] we may
assume that the Whitney stratification {V;} satisfies the strict Thom w-condition.
This implies that for each trajectory . (t) the corresponding family {T'F;}, ;) has a
well defined limit space Ay (,), i.e. it converges to an n-plane Ay ;) C Tr(y)(U) when
t — 1. Hence one has an identification T, F" = A(,) which defines an isomorphism
of vector spaces. Moreover, since wy implies the Thom a¢-condition one has that the
limit space A, contains the space Tr(,)V; tangent to the stratum that contains 7(z).
Therefore the vector v(m(x)) can be lifted to a vector v(x) € T, F'. This vector field v
is non-singular over the inverse image of X,eg, which is open and dense in F. Also v
is non-zero on a neighbourhood of F' N 0B, since v is assumed to have an isolated
singularity at 0. Furthermore, by the wy-condition the vector field v is continuous, so
it has a well defined Poincaré-Hopf index in F". The wy-condition also implies that
the angle between v(w(z)) and v(x) is small. That is, given any a > 0 small, we can
choose 9§ sufficiently small with respect to a so that the angle between v(w(z)) and
v(z) is less than «. This implies that if we replace v by some other lifting of v, the
induced vector fields on F' are homotopic. Since f induces a locally trivial fibration
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over the punctured disc Dg \ 0, then the homotopy class of v does not depend on the
choice of the Milnor fibre. So we obtain:

Proposition 2.1 — The Poincaré-Hopf index of v in F depends only on X C U and
the vector field v. It is independent of the choices of the Milnor fibre F as well as
the liftings involved in its definition. We call this integer the local virtual index of v
on X at 0, and we denote it by I,(v,0,X).

In other words, the index Z,(v,0, X) is the obstruction Obs(v, T*F, 7~ *(B.)) to
the extension of the lifting ¥ as a section of TF without singularity on 7—1(B.(0)).

Let us consider now the case where w is a stratified vector field transversal to the
boundary S. = 9(B;) of every small ball B., pointing outwards; it has a unique sin-
gular point (inside B.) at 0. The Poincaré-Hopf index of w at the point 0, denoted
by I(w,0), is equal to 1, computed either in M or in the stratum V;(0) of X contain-
ing 0 (if the dimension of V;(0) is more than 0). The lifting w is a section of T'F' on
771(S:) = F N S, pointing outwards 7~ 1(B.) = F N Be..

Let us denote by T*F the fiber bundle over F' which is T'F minus the zero section.
The obstruction to the extension of w as a section of T*F inside 7~1(B.) is equal to
the Euler-Poincaré characteristic of the Milnor fiber, i.e.

(2.4) Obs(w, T*F,n~ ! (B:)) = x(F).
We obtain:

Proposition 2.2 — If w is a stratified vector field pointing outwards the ball B. along
its boundary S. = 0(B.), then its local virtual index equals the Euler-Poincaré char-
acteristic of the Milnor fiber:

Zy(w,0,X) = x(F) =1+ (-1)"u(X, 0).

In the sequel, for any vector bundle £ over a space B, we will denote by £* the
bundle over B which is £ minus its zero section.

3. Proportionality Theorems

Let us consider again a stratified vector field v defined on the ball B, C U, with
a unique singularity at 0. We assume further that v is constructed by the radial
extension process of M. H. Schwartz [20]. This means, essentially, that if V; is any
stratum containing V;(0) in its closure, then the vector field v is transversal to the
boundary of every tubular neighbourhood of V;(0) in X, pointing outwards. The
Poincaré-Hopf index of v, computed in V;(0) and denoted I(v,0), can be any integer,
and the fact that v is constructed by radial extension implies that I(v,0) equals the
Poincaré-Hopf index of v computed in &. We shall call v a vector field constructed
by radial extension, or simply a radial vector field if this does not lead to confusion,
as in Theorem 3.1 below. If the stratum V;(0) has dimension 0, this implies that v is
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