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AN EXPLICIT CYCLE REPRESENTING

THE FULTON-JOHNSON CLASS, I

by
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Abstract. — For a singular hypersurface X in a complex manifold we prove, under
certain conditions, an explicit formula for the Fulton-Johnson classes in terms of
obstruction theory. In this setting, our formula is similar to the expression for the
Schwartz-MacPherson classes provided by Brasselet and Schwartz. We use, on the
one hand, a generalization of the virtual (or GSV) index of a vector field to the
case when the ambient space has non-isolated singularities, and on the other hand
a Proportionality Theorem for this index, similar to the one due to Brasselet and
Schwartz.

Résumé(Une description explicite de la classe de Fulton Johnson, I). — Pour une hyper-

surface singulière X d’une variété complexe, et dans certaines conditions, nous mon-
trons une formule explicite pour les classes de Fulton-Johnson en termes de théorie
d’obstruction. Dans ce contexte notre formule est similaire à l’expression des classes
de Schwartz-MacPherson donnée par Brasselet et Schwartz. Nous utilisons, d’une
part, une généralisation de l’indice virtuel (ou GSV-indice) d’un champs de vecteurs
au cas où l’espace ambiant a des singularités non-isolées et, d’autre part, un Théorème
de Proportionnalité pour cet indice, similaire à celui dû à Brasselet et Schwartz.

1. Introduction

There are several different ways to generalize the Chern classes of complex man-

ifolds to the case of singular varieties. Among them are the Schwartz-MacPherson

classes [5, 16, 20] and the Fulton-Johnson classes [8, 9]. Each one of them is defined

in a relevant context and has its own interest and advantages. The construction in

[5, 20] provides a geometric interpretation of the Schwartz-MacPherson classes via
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obstruction theory. This approach is very useful for understanding what these classes

measure.

The motivation for this work is to give such a geometric interpretation of the Fulton-

Johnson classes, in the spirit of [5, 20]. Here we prove that if X ⊂ M is a singular

complex analytic hypersurface of dimension n, defined by a holomorphic function

on a manifold M , then the Fulton-Johnson classes can be regarded as “weighted”

Schwartz-MacPherson classes.

In order to explain our result more precisely, let us consider a complex analytic

manifold M of dimension m, and a compact singular analytic subvariety X ⊂ M .

Let us endow M with a Whitney stratification adapted to X [24], and consider a

triangulation (K) of M compatible with the stratification. We denote by (D) a

cellular decomposition of M dual to (K). Let us notice that if the 2q-cell dα of (D)

meets X , it is dual of a 2(m− q)-simplex σα of (K) in X .

We recall that in her definition of Chern classes, M.H. Schwartz considers particular

stratified r-frames vr tangent to M , called radial frames. They have no singularity

on the (2q − 1)-skeleton of (D), with q = m− r + 1, and isolated singularities on the

2q-cells dα, at their barycenter {σ̂α} = dα ∩ σα. Let us denote by I(vr, σ̂α) the index

of the r-frame vr at σ̂α.

The result of [5] tells us that the Schwartz-MacPherson class cr−1(X) of X of

degree (r − 1) is represented in H2(r−1)(X) by the cycle
∑

σα⊂X,
dim σα=2(r−1)

I(vr, σ̂α) · σα

In this article we prove:

Theorem 1.1. — Let us assume that X ⊂M is a hypersurface, defined by X = f−1(0),

where f : M → D is a holomorphic function into an open disc around 0 in C. For each

point a ∈ X let Fa denote a local Milnor fiber, and let χ(Fa) be its Euler-Poincaré

characteristic. Then the Fulton-Johnson class cFJ
r−1(X) of X of degree (r − 1) is

represented in H2(r−1)(X) by the cycle

(1.1)
∑

σα⊂X,
dim σα=2(r−1)

χ(Fbσα
)I(vr , σ̂α) · σα

On the other hand, the question of understanding the difference between the

Schwartz-MacPherson and the Fulton-Johnson classes has been addressed by sev-

eral authors, and this led to the concept of Milnor classes, defined by µ∗(X) =

(−1)n+1
(
c∗(X) − cFJ

∗
(X)

)
, n = dimX , see for instance [1, 3, 19, 25]. Let us define

the local Milnor number of X at the point a ∈ X by µ(X, a) = (−1)n+1(1 − χ(Fa));

it coincides with the usual Milnor number of [17] when a is an isolated singularity

of X . It is non zero only on the singular set Σ of X . We have the following immediate

consequence of Theorem 1.1:
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Corollary 1.2. — Under the assumptions of Theorem 1.1, the Milnor class µr−1(X)

in H2(r−1)(X) is represented by the cycle

(1.2)
∑

σα⊂Σ
dim σα=2(r−1)

µ(X, σ̂α) I(vr , σ̂α) · σα

One of the key ingredients we use for proving the Theorem 1.1 is a Proportionality

Theorem for the index of vector fields and frames on singular varieties, similar to the

one given in [5]. In order to establish it we were led to defining the local virtual index

at an isolated zero of a smooth vector field on a complex hypersurface with (possibly)

non-isolated singularities. This is a generalization of the indices defined previously in

[4, 12, 15]. We call it “local” virtual index to distinguish it from the “global” virtual

index at a whole component of the singular set, as studied in [4]

We notice that for hypersurfaces with isolated singularities one also has the homo-

logical index of [11], which coincides with the index in [12]. It would be interesting to

know whether our generalized virtual (or GSV) index coincides with the generalized

homological index in [10] when the ambient space has non-isolated singularities.

Our formulae can also be obtained in another way, using the MacPherson mor-

phism c∗ (see [16]) together with the Verdier specialization map of constructible

functions [23], since one knows (see for instance [19]) that the Fulton-Johnson and

the Milnor classes are image by the morphism c∗ of certain constructible functions.

The advantage of our construction here is to provide a geometric and explicit point

of view, which can be used to study the general case. This is being done in [6].

2. The local virtual index of a vector field

Let (X, 0) be a hypersurface germ in an open set U ⊂ C
n+1, defined by a holomor-

phic function f : (U , 0) → (C, 0). Let us endow U with a Whitney stratification {Vi}

compatible with X and let us consider the subspace E of the tangent bundle TU of U

consisting of the union of the tangent bundles of all the strata.:

(2.3) E =
⋃

Vi

TVi

A section of TU whose image is in E is called a stratified vector field on U .

Let v be a stratified vector field on (X, 0) with an isolated singularity (zero) at

0 ∈ X . We want to define an index of v at 0 ∈ X which coincides with the GSV -

index of [12] (or the virtual index in [4]) when 0 is also an isolated singularity of X .

For this, let us consider a (sufficiently small) ball Bε around 0 ∈ U and denote by T

the Milnor tube f−1(Dδ) ∩ Bε, where Dδ is a (sufficiently small) disc around 0 ∈ C.

We let ∂T be the “boundary” f−1(Cδ) ∩Bε of T , Cδ = ∂Dδ.

Let r be the radial vector field in C whose solutions are straight lines converging

to 0. It can be lifted to a vector field r̃ in T , whose solutions are arcs that start in
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∂T and finish in X ; since the corresponding trajectories in C are transversal to all

the circles (Cη) around 0 ∈ C of radius η ∈]0, δ[, it follows that the solutions of r̃ are

transversal to all the tubes f−1(Cη). This vector field r̃ defines a C∞ retraction ξ

of T into X , with X as fixed point set. The restriction of ξ to any fixed Milnor fibre

F = f−1(t0)∩Bε, t0 ∈ Cδ, provides a continuous map π : F → X , which is surjective

and it is C∞ over the regular part of X . We call such map ξ, or also π, a degenerating

map for X (this was called a “collapsing map” in [14]). Since the singular set Σ of X

is a Zariski closed subset of X , we notice that we can choose the lifting r̃ so that

π−1(Xreg) is an open dense subset of F , where Xreg is the regular part Xreg = XrΣ.

We want to use π to lift the stratified vector field v on X to a vector field on F .

Firstly, let us consider the case where X has an isolated singularity at 0. The map π

is a diffeomorphism restricted to a neighbourhood N ⊂ F of F ∩ ∂Bε. Then v can

be lifted to a non-singular vector field on N and extended to the interior of F with

finitely many singularities, by elementary obstruction theory. By definition [12], the

total Poincaré-Hopf index of this vector field on F is the GSV-index of v on X .

We want to generalize this construction to the case when the singularity of X at 0

is not necessarily isolated. Let us consider (X, 0) as above, a possibly non-isolated

germ. We fix a Milnor fibre F = f−1(to) ∩ Bε for some to ∈ Cδ. Given a point

x ∈ F , we let γx be the solution of r̃ that starts at x. The end-point of γx is the

point π(x) ∈ X . We parametrize this arc γx by the interval [0, 1], with γx(0) = x

and γx(1) = π(x). We assume that this interval [0, 1] is the straight arc in C going

from to to 0, so that for each t ∈ [0, 1[, the point γx(t) is in a unique Milnor fibre

Ft = f−1(t) ∩ Bε. The family of tangent spaces to Ft at the points γx(t) defines a

1-parameter family of n-dimensional subspaces of Cn+1, {TFt}γx(t). By [18] we may

assume that the Whitney stratification {Vi} satisfies the strict Thom wf -condition.

This implies that for each trajectory γx(t) the corresponding family {TFt}γx(t) has a

well defined limit space Λπ(x), i.e. it converges to an n-plane Λπ(x) ⊂ Tπ(x)(U) when

t → 1. Hence one has an identification TxF ∼= Λπ(x) which defines an isomorphism

of vector spaces. Moreover, since wf implies the Thom af -condition one has that the

limit space Λπ(x) contains the space Tπ(x)Vi tangent to the stratum that contains π(x).

Therefore the vector v(π(x)) can be lifted to a vector ṽ(x) ∈ TxF . This vector field ṽ

is non-singular over the inverse image of Xreg, which is open and dense in F . Also ṽ

is non-zero on a neighbourhood of F ∩ ∂Bε, since v is assumed to have an isolated

singularity at 0. Furthermore, by the wf -condition the vector field ṽ is continuous, so

it has a well defined Poincaré-Hopf index in F . The wf -condition also implies that

the angle between v(π(x)) and ṽ(x) is small. That is, given any α > 0 small, we can

choose δ sufficiently small with respect to α so that the angle between v(π(x)) and

ṽ(x) is less than α. This implies that if we replace ṽ by some other lifting of v, the

induced vector fields on F are homotopic. Since f induces a locally trivial fibration
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over the punctured disc Dδ r 0, then the homotopy class of ṽ does not depend on the

choice of the Milnor fibre. So we obtain:

Proposition 2.1. — The Poincaré-Hopf index of ṽ in F depends only on X ⊂ U and

the vector field v. It is independent of the choices of the Milnor fibre F as well as

the liftings involved in its definition. We call this integer the local virtual index of v

on X at 0, and we denote it by Iv(v, 0, X).

In other words, the index Iv(v, 0, X) is the obstruction Obs(ṽ, T ∗F, π−1(Bε)) to

the extension of the lifting ṽ as a section of TF without singularity on π−1(Bε(0)).

Let us consider now the case where w is a stratified vector field transversal to the

boundary Sε = ∂(Bε) of every small ball Bε, pointing outwards; it has a unique sin-

gular point (inside Bε) at 0. The Poincaré-Hopf index of w at the point 0, denoted

by I(w, 0), is equal to 1, computed either in M or in the stratum Vi(0) of X contain-

ing 0 (if the dimension of Vi(0) is more than 0). The lifting w̃ is a section of TF on

π−1(Sε) = F ∩ Sε, pointing outwards π−1(Bε) = F ∩Bε.

Let us denote by T ∗F the fiber bundle over F which is TF minus the zero section.

The obstruction to the extension of w̃ as a section of T ∗F inside π−1(Bε) is equal to

the Euler-Poincaré characteristic of the Milnor fiber, i.e.

(2.4) Obs(w̃, T ∗F, π−1(Bε)) = χ(F ).

We obtain:

Proposition 2.2. — If w is a stratified vector field pointing outwards the ball Bε along

its boundary Sε = ∂(Bε), then its local virtual index equals the Euler-Poincaré char-

acteristic of the Milnor fiber:

Iv(w, 0, X) = χ(F ) = 1 + (−1)nµ(X, 0).

In the sequel, for any vector bundle ξ over a space B, we will denote by ξ∗ the

bundle over B which is ξ minus its zero section.

3. Proportionality Theorems

Let us consider again a stratified vector field v defined on the ball Bε ⊂ U , with

a unique singularity at 0. We assume further that v is constructed by the radial

extension process of M. H. Schwartz [20]. This means, essentially, that if Vj is any

stratum containing Vi(0) in its closure, then the vector field v is transversal to the

boundary of every tubular neighbourhood of Vi(0) in X , pointing outwards. The

Poincaré-Hopf index of v, computed in Vi(0) and denoted I(v, 0), can be any integer,

and the fact that v is constructed by radial extension implies that I(v, 0) equals the

Poincaré-Hopf index of v computed in U . We shall call v a vector field constructed

by radial extension, or simply a radial vector field if this does not lead to confusion,

as in Theorem 3.1 below. If the stratum Vi(0) has dimension 0, this implies that v is

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005


