Séminaires & Congrès **10**, 2005, p. 21–38

AN EXPLICIT CYCLE REPRESENTING THE FULTON-JOHNSON CLASS, I

by

Jean-Paul Brasselet, Jose Seade & Tatsuo Suwa

Abstract. — For a singular hypersurface X in a complex manifold we prove, under certain conditions, an explicit formula for the Fulton-Johnson classes in terms of obstruction theory. In this setting, our formula is similar to the expression for the Schwartz-MacPherson classes provided by Brasselet and Schwartz. We use, on the one hand, a generalization of the virtual (or GSV) index of a vector field to the case when the ambient space has non-isolated singularities, and on the other hand a Proportionality Theorem for this index, similar to the one due to Brasselet and Schwartz.

Résumé (Une description explicite de la classe de Fulton Johnson, I). — Pour une hypersurface singulière X d'une variété complexe, et dans certaines conditions, nous montrons une formule explicite pour les classes de Fulton-Johnson en termes de théorie d'obstruction. Dans ce contexte notre formule est similaire à l'expression des classes de Schwartz-MacPherson donnée par Brasselet et Schwartz. Nous utilisons, d'une part, une généralisation de l'indice virtuel (ou GSV-indice) d'un champs de vecteurs au cas où l'espace ambiant a des singularités non-isolées et, d'autre part, un Théorème de Proportionnalité pour cet indice, similaire à celui dû à Brasselet et Schwartz.

1. Introduction

There are several different ways to generalize the Chern classes of complex manifolds to the case of singular varieties. Among them are the Schwartz-MacPherson classes [5, 16, 20] and the Fulton-Johnson classes [8, 9]. Each one of them is defined in a relevant context and has its own interest and advantages. The construction in [5, 20] provides a geometric interpretation of the Schwartz-MacPherson classes via

²⁰⁰⁰ Mathematics Subject Classification. — 14C17, 32S55, 57R20, 58K45.

Key words and phrases. — Schwartz-MacPherson class, Fulton-Johnson class, Milnor class, radial vector fields, virtual indices, Milnor fiber.

Research partially supported by the Cooperation Programs France-Japan, CNRS-JSPS (authors 1 and 3), France-México CNRS/CONACYT (1 and 2), by CONACYT Grant G36357-E (2) and by JSPS Grant 14654010 (3).

obstruction theory. This approach is very useful for understanding what these classes measure.

The motivation for this work is to give such a geometric interpretation of the Fulton-Johnson classes, in the spirit of [5, 20]. Here we prove that if $X \subset M$ is a singular complex analytic hypersurface of dimension n, defined by a holomorphic function on a manifold M, then the Fulton-Johnson classes can be regarded as "weighted" Schwartz-MacPherson classes.

In order to explain our result more precisely, let us consider a complex analytic manifold M of dimension m, and a compact singular analytic subvariety $X \subset M$. Let us endow M with a Whitney stratification adapted to X [24], and consider a triangulation (K) of M compatible with the stratification. We denote by (D) a cellular decomposition of M dual to (K). Let us notice that if the 2q-cell d_{α} of (D) meets X, it is dual of a 2(m-q)-simplex σ_{α} of (K) in X.

We recall that in her definition of Chern classes, M.H. Schwartz considers particular stratified *r*-frames v^r tangent to M, called radial frames. They have no singularity on the (2q-1)-skeleton of (D), with q = m - r + 1, and isolated singularities on the 2q-cells d_{α} , at their barycenter $\{\widehat{\sigma}_{\alpha}\} = d_{\alpha} \cap \sigma_{\alpha}$. Let us denote by $I(v^r, \widehat{\sigma}_{\alpha})$ the index of the *r*-frame v^r at $\widehat{\sigma}_{\alpha}$.

The result of [5] tells us that the Schwartz-MacPherson class $c_{r-1}(X)$ of X of degree (r-1) is represented in $H_{2(r-1)}(X)$ by the cycle

$$\sum_{\substack{\sigma_{\alpha} \subset X, \\ \dim \sigma_{\alpha} = 2(r-1)}} I(v^{r}, \widehat{\sigma}_{\alpha}) \cdot \sigma_{\alpha}$$

In this article we prove:

Theorem 1.1. — Let us assume that $X \subset M$ is a hypersurface, defined by $X = f^{-1}(0)$, where $f: M \to \mathbb{D}$ is a holomorphic function into an open disc around 0 in \mathbb{C} . For each point $a \in X$ let F_a denote a local Milnor fiber, and let $\chi(F_a)$ be its Euler-Poincaré characteristic. Then the Fulton-Johnson class $c_{r-1}^{FJ}(X)$ of X of degree (r-1) is represented in $H_{2(r-1)}(X)$ by the cycle

(1.1)
$$\sum_{\substack{\sigma_{\alpha} \subset X, \\ \dim \sigma_{\alpha} = 2(r-1)}} \chi(F_{\widehat{\sigma}_{\alpha}}) I(v^{r}, \widehat{\sigma}_{\alpha}) \cdot \sigma_{\alpha}$$

On the other hand, the question of understanding the difference between the Schwartz-MacPherson and the Fulton-Johnson classes has been addressed by several authors, and this led to the concept of *Milnor classes*, defined by $\mu_*(X) = (-1)^{n+1} (c_*(X) - c_*^{FJ}(X))$, $n = \dim X$, see for instance [1, 3, 19, 25]. Let us define the local Milnor number of X at the point $a \in X$ by $\mu(X, a) = (-1)^{n+1}(1 - \chi(F_a))$; it coincides with the usual Milnor number of [17] when a is an isolated singularity of X. It is non zero only on the singular set Σ of X. We have the following immediate consequence of Theorem 1.1:

SÉMINAIRES & CONGRÈS 10

Corollary 1.2. — Under the assumptions of Theorem 1.1, the Milnor class $\mu_{r-1}(X)$ in $H_{2(r-1)}(X)$ is represented by the cycle

(1.2)
$$\sum_{\substack{\sigma_{\alpha} \subset \Sigma\\ \dim \sigma_{\alpha} = 2(r-1)}} \mu(X, \widehat{\sigma}_{\alpha}) I(v^{r}, \widehat{\sigma}_{\alpha}) \cdot \sigma_{\alpha}$$

One of the key ingredients we use for proving the Theorem 1.1 is a *Proportionality Theorem* for the index of vector fields and frames on singular varieties, similar to the one given in [5]. In order to establish it we were led to defining *the local virtual index* at an isolated zero of a smooth vector field on a complex hypersurface with (possibly) non-isolated singularities. This is a generalization of the indices defined previously in [4, 12, 15]. We call it "local" virtual index to distinguish it from the "global" virtual index at a whole component of the singular set, as studied in [4]

We notice that for hypersurfaces with isolated singularities one also has the homological index of [11], which coincides with the index in [12]. It would be interesting to know whether our generalized virtual (or GSV) index coincides with the generalized homological index in [10] when the ambient space has non-isolated singularities.

Our formulae can also be obtained in another way, using the MacPherson morphism c_* (see [16]) together with the Verdier specialization map of constructible functions [23], since one knows (see for instance [19]) that the Fulton-Johnson and the Milnor classes are image by the morphism c_* of certain constructible functions. The advantage of our construction here is to provide a geometric and explicit point of view, which can be used to study the general case. This is being done in [6].

2. The local virtual index of a vector field

Let (X, 0) be a hypersurface germ in an open set $\mathcal{U} \subset \mathbb{C}^{n+1}$, defined by a holomorphic function $f : (\mathcal{U}, 0) \to (\mathbb{C}, 0)$. Let us endow \mathcal{U} with a Whitney stratification $\{V_i\}$ compatible with X and let us consider the subspace E of the tangent bundle $T\mathcal{U}$ of \mathcal{U} consisting of the union of the tangent bundles of all the strata.:

(2.3)
$$E = \bigcup_{V_i} TV_i$$

A section of $T\mathcal{U}$ whose image is in E is called a *stratified vector field* on \mathcal{U} .

Let v be a stratified vector field on (X, 0) with an isolated singularity (zero) at $0 \in X$. We want to define an index of v at $0 \in X$ which coincides with the GSVindex of [12] (or the virtual index in [4]) when 0 is also an isolated singularity of X. For this, let us consider a (sufficiently small) ball B_{ε} around $0 \in \mathcal{U}$ and denote by \mathcal{T} the Milnor tube $f^{-1}(D_{\delta}) \cap B_{\varepsilon}$, where D_{δ} is a (sufficiently small) disc around $0 \in \mathbb{C}$. We let $\partial \mathcal{T}$ be the "boundary" $f^{-1}(C_{\delta}) \cap B_{\varepsilon}$ of \mathcal{T} , $C_{\delta} = \partial D_{\delta}$.

Let r be the radial vector field in \mathbb{C} whose solutions are straight lines converging to 0. It can be lifted to a vector field \tilde{r} in \mathcal{T} , whose solutions are arcs that start in $\partial \mathcal{T}$ and finish in X; since the corresponding trajectories in \mathbb{C} are transversal to all the circles (C_{η}) around $0 \in \mathbb{C}$ of radius $\eta \in]0, \delta[$, it follows that the solutions of \tilde{r} are transversal to all the tubes $f^{-1}(C_{\eta})$. This vector field \tilde{r} defines a C^{∞} retraction ξ of \mathcal{T} into X, with X as fixed point set. The restriction of ξ to any fixed Milnor fibre $F = f^{-1}(t_0) \cap B_{\varepsilon}, t_0 \in C_{\delta}$, provides a continuous map $\pi : F \to X$, which is surjective and it is C^{∞} over the regular part of X. We call such map ξ , or also π , a *degenerating map* for X (this was called a "collapsing map" in [14]). Since the singular set Σ of Xis a Zariski closed subset of X, we notice that we can choose the lifting \tilde{r} so that $\pi^{-1}(X_{\text{reg}})$ is an open dense subset of F, where X_{reg} is the regular part $X_{\text{reg}} = X \smallsetminus \Sigma$.

We want to use π to lift the stratified vector field v on X to a vector field on F. Firstly, let us consider the case where X has an isolated singularity at 0. The map π is a diffeomorphism restricted to a neighbourhood $N \subset F$ of $F \cap \partial B_{\varepsilon}$. Then v can be lifted to a non-singular vector field on N and extended to the interior of F with finitely many singularities, by elementary obstruction theory. By definition [12], the total Poincaré-Hopf index of this vector field on F is the GSV-index of v on X.

We want to generalize this construction to the case when the singularity of X at 0 is not necessarily isolated. Let us consider (X, 0) as above, a possibly non-isolated germ. We fix a Milnor fibre $F = f^{-1}(t_o) \cap B_{\varepsilon}$ for some $t_o \in C_{\delta}$. Given a point $x \in F$, we let γ_x be the solution of \tilde{r} that starts at x. The end-point of γ_x is the point $\pi(x) \in X$. We parametrize this arc γ_x by the interval [0,1], with $\gamma_x(0) = x$ and $\gamma_x(1) = \pi(x)$. We assume that this interval [0, 1] is the straight arc in \mathbb{C} going from t_o to 0, so that for each $t \in [0,1[$, the point $\gamma_x(t)$ is in a unique Milnor fibre $F_t = f^{-1}(t) \cap B_{\varepsilon}$. The family of tangent spaces to F_t at the points $\gamma_x(t)$ defines a 1-parameter family of *n*-dimensional subspaces of \mathbb{C}^{n+1} , $\{TF_t\}_{\gamma_x(t)}$. By [18] we may assume that the Whitney stratification $\{V_i\}$ satisfies the strict Thom w_f -condition. This implies that for each trajectory $\gamma_x(t)$ the corresponding family $\{TF_t\}_{\gamma_x(t)}$ has a well defined limit space $\Lambda_{\pi(x)}$, *i.e.* it converges to an *n*-plane $\Lambda_{\pi(x)} \subset T_{\pi(x)}(\mathcal{U})$ when $t \to 1$. Hence one has an identification $T_x F \cong \Lambda_{\pi(x)}$ which defines an isomorphism of vector spaces. Moreover, since w_f implies the Thom a_f -condition one has that the limit space $\Lambda_{\pi(x)}$ contains the space $T_{\pi(x)}V_i$ tangent to the stratum that contains $\pi(x)$. Therefore the vector $v(\pi(x))$ can be lifted to a vector $\tilde{v}(x) \in T_x F$. This vector field \tilde{v} is non-singular over the inverse image of X_{reg} , which is open and dense in F. Also \tilde{v} is non-zero on a neighbourhood of $F \cap \partial B_{\varepsilon}$, since v is assumed to have an isolated singularity at 0. Furthermore, by the w_f -condition the vector field \tilde{v} is continuous, so it has a well defined Poincaré-Hopf index in F. The w_f -condition also implies that the angle between $v(\pi(x))$ and $\tilde{v}(x)$ is small. That is, given any $\alpha > 0$ small, we can choose δ sufficiently small with respect to α so that the angle between $v(\pi(x))$ and $\widetilde{v}(x)$ is less than α . This implies that if we replace \widetilde{v} by some other lifting of v, the induced vector fields on F are homotopic. Since f induces a locally trivial fibration

SÉMINAIRES & CONGRÈS 10

over the punctured disc $D_{\delta} \leq 0$, then the homotopy class of \tilde{v} does not depend on the choice of the Milnor fibre. So we obtain:

Proposition 2.1. — The Poincaré-Hopf index of \tilde{v} in F depends only on $X \subset U$ and the vector field v. It is independent of the choices of the Milnor fibre F as well as the liftings involved in its definition. We call this integer the local virtual index of v on X at 0, and we denote it by $\mathcal{I}_{v}(v, 0, X)$.

In other words, the index $\mathcal{I}_{\mathbf{v}}(v, 0, X)$ is the obstruction $Obs(\tilde{v}, T^*F, \pi^{-1}(B_{\varepsilon}))$ to the extension of the lifting \tilde{v} as a section of TF without singularity on $\pi^{-1}(B_{\varepsilon}(0))$.

Let us consider now the case where w is a stratified vector field transversal to the boundary $S_{\varepsilon} = \partial(B_{\varepsilon})$ of every small ball B_{ε} , pointing outwards; it has a unique singular point (inside B_{ε}) at 0. The Poincaré-Hopf index of w at the point 0, denoted by I(w, 0), is equal to 1, computed either in M or in the stratum $V_i(0)$ of X containing 0 (if the dimension of $V_i(0)$ is more than 0). The lifting \tilde{w} is a section of TF on $\pi^{-1}(S_{\varepsilon}) = F \cap S_{\varepsilon}$, pointing outwards $\pi^{-1}(B_{\varepsilon}) = F \cap B_{\varepsilon}$.

Let us denote by T^*F the fiber bundle over F which is TF minus the zero section. The obstruction to the extension of \tilde{w} as a section of T^*F inside $\pi^{-1}(B_{\varepsilon})$ is equal to the Euler-Poincaré characteristic of the Milnor fiber, *i.e.*

(2.4)
$$Obs(\widetilde{w}, T^*F, \pi^{-1}(B_{\varepsilon})) = \chi(F).$$

We obtain:

Proposition 2.2. — If w is a stratified vector field pointing outwards the ball B_{ε} along its boundary $S_{\varepsilon} = \partial(B_{\varepsilon})$, then its local virtual index equals the Euler-Poincaré characteristic of the Milnor fiber:

$$\mathcal{I}_{\mathbf{v}}(w,0,X) = \chi(F) = 1 + (-1)^n \mu(X,0).$$

In the sequel, for any vector bundle ξ over a space B, we will denote by ξ^* the bundle over B which is ξ minus its zero section.

3. Proportionality Theorems

Let us consider again a stratified vector field v defined on the ball $B_{\varepsilon} \subset \mathcal{U}$, with a unique singularity at 0. We assume further that v is constructed by the radial extension process of M. H. Schwartz [20]. This means, essentially, that if V_j is any stratum containing $V_i(0)$ in its closure, then the vector field v is transversal to the boundary of every tubular neighbourhood of $V_i(0)$ in X, pointing outwards. The Poincaré-Hopf index of v, computed in $V_i(0)$ and denoted I(v, 0), can be any integer, and the fact that v is constructed by radial extension implies that I(v, 0) equals the Poincaré-Hopf index of v computed in \mathcal{U} . We shall call v a vector field constructed by radial extension, or simply a radial vector field if this does not lead to confusion, as in Theorem 3.1 below. If the stratum $V_i(0)$ has dimension 0, this implies that v is