SYMPLECTIC 4-MANIFOLDS CONTAINING SINGULAR RATIONAL CURVES WITH (2,3)-CUSP

by

Hiroshi Ohta \& Kaoru Ono

Abstract

If a symplectic 4-manifold contains a pseudo-holomorphic rational curve with a (2,3)-cusp of positive self-intersection number, then it must be rational.

Résumé (Variétés symplectiques de dimension 4 contenant des courbes rationnelles singulières avec points de rebroussement de type (2,3))

Si une variété symplectique de dimension 4 contient une courbe rationnelle pseudo-holomorphe avec un point de rebroussement de type $(2,3)$ de nombre d'auto-intersection positif, alors elle est elle-même rationnelle.

1. Introduction

In the previous paper [5], we studied topology of symplectic fillings of the links of simple singularities in complex dimension 2 . In fact, we proved that such a symplectic filling is symplectic deformation equivalent to the corresponding Milnor fiber, if it is minimal, i.e., it does not contain symplectically embedded 2 -spheres of selfintersection number -1 . In this short note, we present some biproduct of the argument in [5]. For smoothly embedded pseudo-holomorphic curves, the self-intersection number can be arbitrary large, e.g., sections of ruled symplectic 4-manifolds. The situation is different for singular pseudo-holomorphic curves. In fact, we prove the following:

Main Theorem. - Let M be a closed symplectic 4-manifold containing a pseudoholomorphic rational curve C with a (2,3)-cusp point. Suppose that C is non-singular away from the $(2,3)$-cusp point. If the self-intersection number C^{2} of C is positive, then M must be a rational symplectic 4-manifold and C^{2} is at most 9.

2000 Mathematics Subject Classification. - Primary 53D35; Secondary 14J80.
Key words and phrases. - Symplectic fillings, pseudo-holomorphic curves.
H.O. is partly supported by Grant-in-Aid for Scientific Research No. 12640066, JSPS.
K.O. is partly supported by Grant-in-Aid for Scientific Research No. 14340019, JSPS.

This is a corollary of the uniqueness of symplectic deformation type of minimal symplectic fillings of the link of the simple singularity of type E_{8}, i.e., the isolated singularity of $x^{2}+y^{3}+z^{5}=0$. There are similar applications of the uniqueness result for A_{n} and D_{n} cases. We can apply these results to classification of minimal symplectic fillings of quotient surface singularities other than simple singularities, which will be discussed elsewhere.

2. Preliminaries

In this section, we recall necessary materials from [5]. Let L be the link of an isolated surface singularity. L carries a natural contact structure ξ defined by the maximal complex tangency, i.e., $\xi=T L \cap \sqrt{-1} T L$. Note that the contact structure on a $(4 k+3)$-dimensional manifold induces a natural orientation on it. In particular, L, which is 3 -dimensional, is naturally oriented. A compact symplectic manifold (W, ω) is called a strong symplectic filling (resp. strong concave filling) of the contact manifold (L, ξ), if the orientation of L as a contact manifold is the same as (resp. opposite to) the orientation as the boundary of a symplectic manifold W and there exists a 1 -form θ on L such that $\xi=\operatorname{ker} \theta$ and $d \theta=\omega$. This condition is equivalent to the existence of an outward (resp. inward) normal vector field around ∂W such that $\mathcal{L}_{X} \omega=\omega$ and $i(X) \omega$ vanishes on ξ. Hereafter, we call strong symplectic fillings simply as symplectic fillings, since we do not use weak symplectic fillings in this note. It may be regarded as a symplectic analog of (pseudo) convexity for the boundary. Such a boundary (or a hypersurface) is said to be of contact type. Simple examples are the boundaries of convex domains, or more generally star-shaped domains in a symplectic vector space. Namely, if the convex domain contains the origin, the Euler vector field $\sum\left(x_{i} \frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial y_{i}}\right)$ is a desired outward vector field. Here $\left\{x_{i}, y_{i}\right\}$ are the canonical coordinates.

Simple singularities are isolated singularities of \mathbf{C}^{2} / Γ, where Γ is a finite subgroup of $S U(2)$. Such subgroups are in one-to-one correspondence with the Dynkin diagrams of type $A_{n}, D_{n}(n \geqslant 4)$, and $E_{n}(n=6,7,8)$.

In [5], we proved the following:
Theorem 2.1. - Let X be any minimal symplectic filling of the link of a simple singularity. Then the diffeomorphism type of X is unique. Hence, it must be diffeomorphic to the Milnor fiber.

Let us restrict ourselves to the case of type E_{8} and give a sketch of the proof. Let X be a minimal symplectic filling of the link of the simple singularity of type E_{8}. Using Seiberg-Witten-Taubes theory, we proved that $c_{1}(X)=0$, which is a special feature for the Milnor fiber and that the intersection form of X is negative definite, which is a special feature for the (minimal) resolution. In the course of the argument, we also have $b_{1}(X)=0$. We glue X with another manifold Y, which is given below, to
get a closed symplectic 4-manifold. To find Y, we recall K. Saito's compactification of the Milnor fiber [6]. The Milnor fiber $\left\{x^{2}+y^{3}+z^{5}=1\right\}$ is embedded in a weighted projective 3 -space. Take its closure and resolve the singularities at infinity to get a smooth projective surface. Set Y a regular neighborhood of the divisor at infinity, which we call the compactifying divisor \widetilde{D}. Then we may assume that the boundary of Y is pseudo-concave, hence strongly symplectically concave (see Proposition 4.2). Note that the compactifying divisor consists of four rational curves with self-intersection number $-1,-2,-3$ and -5 , respectively, which intersect one another as in Figure 2.2.

Figure 2.2
Topologically, the compactifying divisor \widetilde{D} is the core of the plumbed manifold. We glue X and Y along boundaries to get a closed symplectic 4-manifold Z. Since $c_{1}(X)=0, c_{1}(Z)$ is easily determined as the Poincaré dual of an effective divisor. In particular, we have $\int_{Z} c_{1}(Z) \wedge \omega_{Z}>0$, which implies that Z is a rational or ruled symplectic 4-manifold. Note that $b_{1}(Z)=0$ because of the Mayer-Vietrois sequence and the fact that $b_{1}(X)=0$. Hence Z is a rational symplectic 4-manifold. Combining Hirzebruch's signature formula and calculation of the Euler number, we get $b_{2}(Z)=12$. Thus Z is symplectic deformation equivalent to the 11 -point blow-up of $\mathbf{C} P^{2}$.

The remaining task is to determine the embedding of Y in Z, or the embedding of the compactifying divisor in Z. In [5], we successively blow-down (-1)-curves three times to get a singular rational pseudo-holomorphic curve \bar{D}, see Figure 2.3.

Figure 2.3

Then we showed that there are eight disjoint pseudo-holomorphic (-1)-curves $\left\{\varepsilon_{i}\right\}$ in \bar{Z} so that each ε_{i} intersects \bar{D} exactly at one point in the non-singular part of \bar{D}
transversally. Blowing-down $\varepsilon_{i}, i=1, \ldots, 8$, we get $\mathbf{C} P^{2}$ and \bar{D} is transformed to a singular pseudo-holomorphic cubic curve D.

Conversely, we start from a singular holomorphic cubic curve D_{0} in $\mathbf{C} P^{2}$ with respect to the standard complex structure, e.g., the one defined by $x^{3}+y^{2} z=0$. Pick eight points on the non-singular part of D_{0} and blow up $\mathbf{C} P^{2}$ at these points to get \bar{Z}_{0}. Denote by $\overline{D_{0}}$ the proper transform of D_{0}. Blowing-up \bar{Z}_{0} three more times by following the process in Figure 2.2 in the opposite way, we arrive at Z_{0}, the 11-point blow-up of $\mathbf{C} P^{2}$. It contains the total transform $\widetilde{D_{0}}$ of $\overline{D_{0}}$, which is the same configuration as in Figure 2.2. We showed, in [5], the following:
Theorem 2.4. - The pair (Z, \widetilde{D}) is symplectic deformation equivalent to the pair $\left(Z_{0}, \widetilde{D_{0}}\right)$. In particular, \widetilde{D} is an anti-canonical divisor of Z.

Recall that X is the complement of a regular neighborhood of \widetilde{D} in Z, hence it is symplectic deformation equivalent to the complement of a regular neighborhood of \widetilde{D}_{0} in Z_{0}. In particular, we obtained the uniqueness of symplectic deformation types.

By following the blowing-down process, we have
Corollary 2.5. - \bar{D} is an anti-canonical divisor of \bar{Z}.
Note that \bar{D}_{0} in \bar{Z}_{0} is a holomorphic rational curve with a (2,3)-cusp point and that $\bar{Z}_{0} \backslash \bar{D}_{0}=Z_{0} \backslash \widetilde{D}_{0}$ is a minimal symplectic filling of the simple singularity of the type E_{8}. We expect a similar phenomenon for our M and C in our Main Theorem. This is a key to the proof of Main Theorem.

3. Proof of Main Theorem

Let M be a closed symplectic 4-manifold and C a pseudo-holomorphic rational curve with a $(2,3)$-cusp point. Here a $(2,3)$-cusp point is defined as the singularity of $z \mapsto\left(z^{2}, z^{3}\right)+O(4)($ see $[\mathbf{3}])$. We assume that C is non-singular away from the cusp point. The following lemma is a direct consequence of McDuff's theorem in [4].

Lemma 3.1. - C can be perturbed in a neighborhood of the cusp point so that the perturbed curve is a pseudo-holomorphic rational curve with one $(2,3)$-cusp point with respect to a tame almost complex structure, which is integrable near the cusp point.

Proof. - Notice that $z \mapsto\left(z^{2}, z^{3}\right)$ is primitive in the sense of [4]. Then the conclusion follows from the proof of Theorem 2 in [4].

Remark. - The almost complex structure in the proof is not generic among tame almost complex structures, when the self-intersection number of C is less than 2 .

Write $k=C^{2}$. Pick a tame almost complex structure on M such that C is J holomorphic as in Lemma 3.1. If $M \backslash C$ is not minimal, we contract all J-holomorphic (-1)-rational curves which do not intersect C to get a pair $\left(M^{\prime}, C\right)$ so that $M^{\prime} \backslash C$
is minimal. We blow-up M^{\prime} at $(k-1)$ points on the non-singular part of C to get a closed symplectic 4-manifold \widetilde{M}. We denote the set of the exceptional curves by $\left\{e_{i}\right\}$. The proper transform \bar{D} of C is a pseudo-holomorphic rational curve with one (2,3)cusp point and $\bar{D}^{2}=1$. Now we perform the opposite operation to the one indicated in Figure 2.3. Namely, we blow-up \widetilde{M} at the cusp point of \bar{D} to get two non-singular rational curves of self-intersection number -1 and -3 , respectively, which are tangent to each other. These two curves are simply tangent to each other. Now we blow up the point of tangency to get three non-singular rational curves meeting at a common point pair-wisely transversally. Their self-intersection numbers are $-1,-2$ and -4 . Finally we blow up the intersection point to get a configuration of non-singular rational curves as in Figure 2.3. This configuration is exactly the compactifying divisor \widetilde{D} in section 2 . We denote by N the ambient symplectic 4 -manifold.

Lemma 3.2. - The complement of a regular neighborhood of \widetilde{D} in N is a symplectic filling of the link of the singularity of type E_{8}.

Proof. - It is enough to see that the boundary of a regular neighborhood of \widetilde{D} has a concave boundary. We can contract $(-2),(-3)$ and (-5)-curves to get a symplectic V-manifold. The image D^{\prime} of the (-1)-curve is still an embedded rational curve, whose normal bundle is of degree $-1+1 / 2+1 / 3+1 / 5=1 / 30>0$. Hence we can take a tubular neighborhood of D^{\prime}, whose boundary is strongly symplectically concave with the help of Darboux-Weinstein theorem [7]. Note that it is contactomorphic to the link of the simple singularity of type E_{8}. Hence the complement of a regular neighborhood of \widetilde{D} in N is a symplectic filling of the link of E_{8}-singularity.

Now, we show the following lemma.
Lemma 3.3. - $N \backslash \widetilde{D}$ is minimal.

Proof. - Assume that it is not minimal. We contract pseudo-holomorphic (-1)rational curves f_{j} in $N \backslash \widetilde{D}$ to obtain $\pi: N \rightarrow \bar{N}$ such that $\bar{N} \backslash \widetilde{D}$ is minimal. Here, we use \widetilde{D} for the image of \widetilde{D} by π, since π is an isomorphism around \widetilde{D}. Then $\bar{N} \backslash \widetilde{D}$ is a minimal symplectic filling of the link of E_{8}-singularity. After gluing it with Y in section 2 , we get back \bar{N}. Then Corollary 2.5 implies that $\widetilde{D}+E_{1}$ is an anti-canonical divisor of \bar{N}, which is a rational symplectic 4-manifold, where E_{1} is the (-1)-curve in \widetilde{D} as in Figure 2.3. Since each e_{i} in \widetilde{M} does not contain the cusp point of \bar{D}, it is also a symplectic (-1)-curve in N and does not intersect E_{1}. By abuse of notation, we also denote it by e_{i}. Note that $f_{j} \cdot e_{i} \geqslant 1$ for some i, because $N \backslash \widetilde{D} \cup\left(\cup_{i} e_{i}\right)$ is minimal. On the other hand, we have

$$
K_{N}=\pi^{*} K_{\bar{N}}+\sum f_{j}=-[\widetilde{D}]-\left[E_{1}\right]+\sum f_{j}
$$

