CONSTRUCTION D'HYPERSURFACES AFFINES À COHOMOLOGIE D'INTERSECTION PRESCRITE

par

Patrick Polo

Résumé. — Soit $\rho(q)=a_1q+\cdots+a_dq^d$ un polynôme de degré d, à coefficients entiers positifs ou nuls, et sans terme constant. On pose $a=\rho(1)$ et N=2d+a. On exhibe une hypersurface quasi-homogène $V_\rho\subset\mathbb{C}^{N+1}$ dont le m-ième nombre de Betti, pour la cohomologie d'intersection, est a_i si m=2i, et 0 sinon. Explicitement, soient $x_1,y_1,\ldots,x_d,y_d,z_0,z_1,\ldots,z_a$ des indéterminées et, pour $s=1,\ldots,d$, soit π_s le produit des z_i , pour $1\leqslant i\leqslant a_1+\cdots+a_s$. Alors V_ρ est définie par le polynôme $F_\rho=x_1y_1+\pi_1x_2y_2+\cdots+\pi_{d-1}x_dy_d+\pi_dz_0$. Ceci est conséquence d'un travail antérieur de l'auteur, concernant les variétés de Schubert.

Abstract (Construction of affine hypersurfaces with prescribed intersection cohomology)

Let $\rho(q)=a_1q+\cdots+a_dq^d$ be a polynomial of degree d, with non-negative integral coefficients and without constant term. Let $a=\rho(1)$ and N=2d+a. We exhibit a quasi-homogeneous hypersurface $V_\rho\subset\mathbb{C}^{N+1}$ such that the m-th intersection cohomology Betti number of V_ρ is a_i for m=2i, and 0 otherwise. Explicitly, let $x_1,y_1,\ldots,x_d,y_d,z_0,z_1,\ldots,z_a$ be indeterminates and, for $s=1,\ldots,d$, let π_s denote the product of the z_i , for $1\leqslant i\leqslant a_1+\cdots+a_s$. Then V_ρ is defined by the polynomial $F_\rho=x_1y_1+\pi_1x_2y_2+\cdots+\pi_{d-1}x_dy_d+\pi_dz_0$. This is a consequence of earlier work of the author about Schubert varieties.

Introduction

Le but de cet article, principalement d'exposition, est de montrer le résultat suivant. Soit $\rho(q) = a_1 q + \dots + a_d q^d$ un polynôme de degré $d \ge 1$, à coefficients entiers ≥ 0 , et sans terme constant. Soient $x_1, y_1, \dots, x_d, y_d, z_0, z_1, \dots, z_a$ des indéterminées, où l'on a posé $a = a_1 + \dots + a_d$, et soit V_ρ l'hypersurface définie par le polynôme

$$F_{\rho} := x_1 y_1 + \left(\prod_{i=1}^{a_1} z_i\right) x_2 y_2 + \dots + \left(\prod_{i=1}^{a_1 + \dots + a_{d-1}} z_i\right) x_d y_d + \prod_{i=0}^{a} z_i.$$

Alors, la cohomologie d'intersection de V_{ρ} est décrite par le théorème suivant.

Théorème. — On a
$$\sum_{i\geqslant 0} \dim_{\mathbb{C}} \operatorname{IH}^i(V_{\rho}) t^i = 1 + \rho(t^2)$$
.

Classification mathématique par sujets (2000). — $32S60,\ 14M15.$

Mots clefs. — Cohomologie d'intersection, hypersurfaces, variétés de Schubert, polynômes de Kazhdan-Lusztig.

256 P. POLO

Comme F_{ρ} est quasi-homogène, on a $\operatorname{IH}^{i}(V_{\rho}) \cong \mathcal{IH}^{i}_{0}(V_{\rho})$, où $\mathcal{IH}^{i}_{0}(V_{\rho})$ désigne la fibre au point 0 du faisceau $\mathcal{IH}^{i}(V_{\rho})$. Le théorème est alors conséquence du fait que V_{ρ} s'identifie, au produit par un espace affine près, à un certain ouvert d'une variété de Schubert $X_{w_{\rho}}$, sur lequel on a décrit les faisceaux \mathcal{IH}^{i} dans [10]. De façon plus précise, dans [10] on a associé au polynôme ρ un certain couple d'éléments $y_{\rho} < w_{\rho}$ dans le groupe symétrique S_{n} , où n = a + d + 2, et montré que :

(*)
$$\sum_{i\geq 0} \dim_{\mathbb{C}} \mathcal{IH}^{i}_{y_{\rho}}(X_{w_{\rho}}) t^{i} = 1 + \rho(t^{2}).$$

On montre ici qu'un voisinage ouvert de y_ρ dans X_{w_ρ} est isomorphe au produit d'un espace affine par V_ρ , ce qui entraı̂ne le résultat voulu.

La démonstration de (*) donnée dans [10] comporte essentiellement quatre étapes. Pour la commodité du lecteur, on rappelle brièvement ces quatre étapes, et l'on indique comment l'un des ingrédients, un argument de théorie des représentations dû à Irving [6], peut être remplacé par un argument géométrique dû à Braden et MacPherson [2]. On donne aussi, dans le cas de V_{ρ} , une démonstration directe de l'une des étapes, plus simple qu'un énoncé général sur les variétés de Schubert démontré dans [10, Sect.4].

1. Énoncé du théorème

1.1. Soit X une variété algébrique irréductible sur \mathbb{C} . On désigne par $\mathrm{IC}(X)$ le complexe d'intersection de X, et par $\mathrm{IH}^{\bullet}(X) := \mathbb{H}^{\bullet}(X,\mathrm{IC}(X))$ la cohomologie d'intersection, voir [5]. A la différence de loc. cit., on prend la convention que $\mathrm{IC}(X)$ coïncide sur le lieu lisse de X avec le faisceau constant \mathbb{C} placé en degré 0 (au lieu de $-\dim_{\mathbb{C}} X$ dans loc. cit.). Notons $\mathcal{IH}^i(X)$ les faisceaux de cohomologie de $\mathrm{IC}(X)$ et, pour tout point $x \in X$, notons $\mathcal{IH}^i_x(X)$ la fibre en x.

Soit t une indéterminée. On considèrera les polynômes suivants :

$$\begin{split} IH(X,t) &:= \sum_{i \geqslant 0} \dim_{\mathbb{C}} \operatorname{IH}^i(X) \, t^i, \\ IH_x(X,t) &:= \sum_{i \geqslant 0} \dim_{\mathbb{C}} \mathcal{IH}^i_x(X) \, t^i. \end{split}$$

1.2. Soit $\rho(q)=a_1q+\cdots+a_dq^d$ un polynôme de degré $d\geqslant 1$, à coefficients entiers $\geqslant 0$, et sans terme constant, où $q=t^2$. Soient $x_1,y_1,\ldots,x_d,y_d,\ z_0,z_1,\ldots,z_a$ des indéterminées, où l'on a posé $a=a_1+\cdots+a_d$. Posons N=2d+a et considérons l'hypersurface V_ρ de \mathbb{C}^{N+1} définie par le polynôme F_ρ suivant :

$$F_{\rho} := x_1 y_1 + \left(\prod_{i=1}^{a_1} z_i \right) x_2 y_2 + \dots + \left(\prod_{i=1}^{a_1 + \dots + a_{d-1}} z_i \right) x_d y_d + \prod_{i=0}^{a} z_i.$$

Théorème. — $\mathrm{IH}(V_{\rho},t)=\mathrm{IH}_0(V_{\rho},t)=1+\rho(t^2).$

La première égalité résulte du fait que F_{ρ} est quasi-homogène, de poids total a+1, si l'on attribue, par exemple, le poids 1 à chaque x_i et z_i , et le poids $\sum_{i\geq i} a_i$ à chaque y_i .

La seconde égalité est conséquence du fait, démontré plus bas, que V_{ρ} s'identifie, au produit par un espace affine près, à un certain ouvert d'une variété de Schubert $X_{w_{\rho}}$, sur lequel on a décrit les faisceaux \mathcal{IH}^{i} dans [10].

2. Variétés de Schubert

2.1. Soit $n \ge 2$. On note $\{e_1, \ldots, e_n\}$ la base canonique de \mathbb{C}^n et l'on désigne par \mathbb{C}^i le sous-espace engendré par e_1, \ldots, e_i . Le groupe GL(n) agit transitivement sur l'ensemble des drapeaux $V^1 \subset \cdots \subset V^{n-1} \subset \mathbb{C}^n$, où dim $V^i = i$, et le stabilisateur du drapeau standard $\mathbb{C}^1 \subset \cdots \subset \mathbb{C}^{n-1}$ est le sous-groupe B des matrices triangulaires supérieures. Ainsi, GL(n)/B s'identifie à la variété des drapeaux, notée Fl(n).

On considère le groupe symétrique S_n comme un sous-groupe de GL(n), agissant par permutation des e_i . Pour tout $w \in S_n$, soit V_w^{\bullet} le drapeau défini par $V_w^i = w(\mathbb{C}^i)$; il correspond au point wB/B. On note $\ell(w)$ le nombre d'inversions de w et l'on introduit la fonction de rang de w, définie par

$$r_w(a, b) = \#\{i \le a \mid w(i) \le b\},\$$

pour $a,b \in [1,n]$. Il est bien connu que l'orbite BV_w^{\bullet} est un espace affine de dimension $\ell(w)$ et que son adhérence, notée X_w et appelée la variété de Schubert associée à w, est l'ensemble des drapeaux V^{\bullet} vérifiant

(1)
$$\dim(V^a \cap \mathbb{C}^b) \geqslant r_w(a, b), \qquad \forall a, b \in [1, n],$$

voir, par exemple, [9, §§ 2.1 & 3.6.2]. On note $v \leq w$ si $X_v \subseteq X_w$; c'est l'ordre d'Ehresmann-Bruhat-Chevalley sur S_n .

Remarque. — Pour la commodité du lecteur, on rappelle le fait suivant (cf. [4, § 10.5, Ex.10] ou [9, Prop. 3.6.6]). Dans (1), il suffit de se limiter aux couples (a,b) qui vérifient :

(†)
$$w^{-1}(b) \le a \le w^{-1}(b+1)$$
 et $w(a) \le b < w(a+1)$.

En effet, si $a < w^{-1}(b)$ alors $r_w(a,b) = r_w(a,b-1)$ et la condition pour (a,b) est conséquence de celle pour (a,b-1). On peut donc supposer $a \ge w^{-1}(b)$. Si de plus $a \ge w^{-1}(b+1)$, alors $r_w(a,b+1) = r_w(a,b)+1$ et la condition $\dim(V^a \cap \mathbb{C}^b) \ge r_w(a,b)$ peut être omise car elle est conséquence de

$$\dim(V^a \cap \mathbb{C}^{b+1}) \geqslant r_w(a, b+1) = r_w(a, b) + 1.$$

De même, si b < w(a) alors $r_w(a,b) = r_w(a-1,b)$ et la condition pour (a,b) résulte de celle pour (a-1,b). Enfin, si $b \ge \max\{w(a), w(a+1)\}$, alors $r_w(a+1,b) = r_w(a,b) + 1$ et la condition pour (a,b) résulte de celle pour (a+1,b). Ceci montre qu'il suffit de se limiter dans (1) aux couples (a,b) vérifiant (\dagger) .

258 P. POLO

2.2. Soit U^- le sous-groupe de GL(n) formé des matrices triangulaires inférieures unipotentes. Soient $y \leq w$ dans S_n et soit $\Omega_{y,w} := X_w \cap yU^-B/B$; c'est un voisinage ouvert du point V_y^{\bullet} dans X_w .

Rappelons qu'on a identifié S_n au sous-groupe de GL(n) formé des matrices de permutation. Ainsi, le translaté yU^- est bien défini et est une sous-variété fermée de GL(n). Posons

$$\mathcal{V}_{y,w} := \{ u \in yU^- \cap U^- y \mid uV_y^{\bullet} \in X_w \};$$

c'est une sous-variété fermée de yU^- . On sait, d'après [7, Lemma A.4], que $\Omega_{y,w}$ est isomorphe au produit de l'orbite $BV_v^{\bullet} \cong \mathbb{C}^{\ell(y)}$ et de la variété $\mathcal{V}_{y,w}$.

Notons φ l'inclusion $\mathcal{V}_{y,w} \hookrightarrow X_w$ ainsi obtenue; c'est une immersion transversalement lisse (je propose cette terminologie comme traduction de « normally nonsingular »). Alors, d'après [5, Th. 5.4.1], l'on a $IC(\mathcal{V}_{y,w}) \cong \varphi^* IC(X_w)$. On a donc

$$\mathrm{IH}_{y}(\mathcal{V}_{y,w},t) = \mathrm{IH}_{y}(X_{w},t).$$

De plus, d'après Kazhdan et Lusztig [8] (voir aussi [11] pour une démonstration différente, due à MacPherson), le terme de droite est égal au polynôme de Kazhdan-Lusztig $P_{y,w}(t^2)$.

Enfin, notons $C_{[y,w]}$ l'ouvert $\bigcup_{z\in[y,w]}BzB/B$ de X_w . On sait, d'après Chevalley (voir $[\mathbf{3},\S 3.3, \text{Lemme } 1(\mathbf{a})]$), que $\Omega_{y,w}\subseteq C_{[y,w]}$.

2.3. Revenons à notre polynôme $\rho(q) = \sum_{s=1}^d a_s q^s$ et posons $a = \rho(1)$ et n = a+d+2. Introduisons de plus les notations suivantes. Soit $A_s = a_1 + \dots + a_s$, pour $s = 1, \dots, d$, et, pour $i = 1, \dots, a$, notons d_i le plus petit entier $s \geqslant 1$ tel que $i \leqslant A_s$. Dans [10], on a associé à ρ les éléments w_ρ et y_ρ de S_n définis comme suit. Premièrement, $w_\rho(n) = 2$, $w_\rho(n-1) = 1$, $w_\rho(n-s) = A_{s-1} + s + 1$ pour $s = 2, \dots, d$, et, pour $i = 1, \dots, a$, $w(i) = i + 1 + d_i$. Deuxièmement, $y_\rho(1) = 1$, $y_\rho(n) = n$, $y_\rho(i) = w_\rho(i-1)$ pour $i = 2, \dots, a+1$, et pour $s = 1, \dots, d$, $y_\rho(n-s) = A_{s-1} + s + 1$ (on pose $A_0 = 0$). On vérifie sans difficulté que y < w et $\ell(w) - \ell(y) = 2d + a$, voir [10, § 2.1].

Proposition. — $V_{\rho} \cong \mathcal{V}_{y_{\rho}, w_{\rho}}$.

Démonstration. — D'abord, pour tout $y \in S_n$, la sous-variété $yU^- \cap U^-y$ de GL(n) est formée des matrices $(u_{ji})_{1 \le j,i \le n}$ telles que $u_{y(i),i} = 1$ et $u_{j,i} = 0$ si $y^{-1}(j) < i$ ou j < y(i).

D'autre part, on déduit de la remarque 2.1 que $X_{w_{\rho}}$ est formée des drapeaux V^{\bullet} qui vérifient $\mathbb{C}^1 \subset V^{n-1}$ et $V^i \subset \mathbb{C}^{i+1+d_i}$, pour $i=1,\ldots,a$.

On déduit de ce qui précède la description suivante de $\mathcal{V}_{y_{\rho},w_{\rho}}$. Soit (u_{ji}) un élément arbitraire de $\mathcal{V}_{y_{\rho},w_{\rho}}$. Comme $y_{\rho}(i') < y_{\rho}(i)$ si $a+1 \leqslant i < i' \leqslant n-1$, on obtient déjà que dans les colonnes C_i , où $a+1 \leqslant i \leqslant n-1$, mis à part $u_{y(i),i}$ qui vaut 1, tous les termes sont nuls sauf éventuellement ceux de la dernière ligne. On pose $z_0 = u_{n,a+1}$ et $y_s = u_{n,n-s}$, pour $s = 1, \ldots, d$.

De plus, pour $1 \leq i \leq a$, la condition $V^i \subseteq \mathbb{C}^{i+1+d_i}$ entraı̂ne que $u_{ji} = 0$ si $j > i+1+d_i$. Par conséquent, dans les colonnes d'indice $i \leq a$, mis à part $u_{y(i),i}$ qui vaut 1, les seuls termes éventuellement non nuls sont les u_{ji} avec $1+i+d_{i-1} \leq j \leq 1+i+d_i$. On pose $z_i = -u_{1+i+d_i,i}$ et l'on désigne par $-x_1, \ldots, -x_d$ les coefficients u_{ji} restants, en lisant de haut en bas la première colonne, puis la seconde, etc. C.-à-d., $x_1 = -u_{21}$ et lorsqu'on passe de x_i à x_{i+1} , l'indice de ligne augmente de $1+a_i$, et l'indice de colonne augmente de a_i (voir les exemples plus bas). En termes de formule, ceci donne

$$x_{s+1} = -u_{A_s+s+2,A_s+1},$$
 pour $s = 1, \dots, d-1$.

On obtient ainsi que $\mathcal{V}_{y_{\rho},w_{\rho}}$ s'identifie à la sous-variété de l'espace affine \mathbb{C}^{N+1} formée des matrices $\underline{\mathbf{u}} = \underline{\mathbf{u}}(x_1,y_1,\ldots,x_d,y_d,z_0,z_1,\ldots,z_a)$ telles que $e_1 \in \underline{\mathbf{u}}(\mathbb{C}^{n-1})$. Cette condition équivaut au fait que la sous-matrice de $\underline{\mathbf{u}}$ obtenue en prenant les colonnes de 1 à n-1 et les lignes de 2 à n, est singulière. Or, en ajoutant à la 1ère colonne une combinaison linéaire appropriée des autres colonnes, on voit que le déterminant de cette sous-matrice est $\pm F_{\rho}$. Ceci prouve la proposition.

Illustrons le calcul fait dans la démonstration par les deux exemples ci-dessous. On a désigné par des • les coefficients u_{ji} qui sont nuls parce que $y^{-1}(j) < i$ ou j < y(i), et par des 0 les coefficients u_{ji} pour $1 \le i \le a$ et $j > 1 + i + d_i$, qui sont nuls en raison de la condition $\underline{\mathbf{u}}(\mathbb{C}^i) \subseteq \mathbb{C}^{1+i+d_i}$.

et $\mathcal{V}_{y_{\rho},w_{\rho}}$ est formée des matrices $\underline{\mathbf{u}}$:

1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
$-x_1$	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•
$-z_1$	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	$-x_{2}$	•	•	•	•	•	•	•	•	•	•	•	1	•	•
0	$-z_2$	1	•	•	•	•	•	•	•	•	•	•	•	•	•
0	0	$-z_3$	1	•	•	•	•	•	•	•	•	•	•	•	•
0	0	0	$-x_3$	•	•	•	•	•	•	•	•	1	•	•	•
0	0	0	-z ₄	1	•	•	•	•	•	•	•	•	•	•	•
0	0	0	0	- <i>z</i> 5	1	•	•	•	•	•	•	•	•	•	•
0	0	0	0	0	$-z_{6}$	1	•	•	•	•	•	•	•	•	•
0	0	0	0	0	0	$-x_4$	•	•	•	•	1	•	•	•	•
0	0	0	0	0	0	$-z_{7}$	1	•	•	•	•	•	•	•	•
0	0	0	0	0	0	0	$-z_{8}$	1	•	•	•	•	•	•	•
0	0	0	0	0	0	0	0	- <i>z</i> 9	1	•	•	•	•	•	•
0	0	0	0	0	0	0	0	0	$-z_{10}$	1	•	•	•	•	•
0	0	0	0	0	0	0	0	0	0	z_0	y_4	y_3	y_2	y_1	1