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Abstract. — Grothendieck local residues are studied from a view point of algebraic

analysis. The main idea in this approach is the use of regular holonomic D-modules

attached to a zero-dimensional algebraic local cohomology class. A new method

for computing Grothendieck local residues is developed in the context of Weyl alge-

bra. An effective computing algorithm that exploits first order annihilators is also

described.

Résumé(Aspects effectifs des résidus locaux de Grothendieck). — On étudie le résidu

local de Grothendieck du point de vue de l’analyse algébrique. L’idée principale de

cette approche est l’utilisation de D-modules holonomes réguliers attachés à une

classe algébrique de cohomologie locale en dimension zéro. On développe une méthode

nouvelle pour calculer les résidus locaux de Grothendieck dans le cadre de l’algèbre

de Weyl. Cette méthode permet de décrire un algorithme efficace, lequel utilise les

annulateurs du premier ordre.

1. Introduction

In this paper, we consider Grothendieck local residues and its duality in the context

of holonomic D-modules. Upon using the regular holonomic system associated to a

certain zero-dimensional algebraic local cohomology class, we derive a method for

computing Grothendieck local residues. We also give an effective algorithm that

serves exact computations.

In §2, we study local residues from the viewpoint of the analytic D-module theory.

By using the local residue pairing, we associate to an algebraic local cohomology class

attached to a given regular sequence an analytic linear functional acting on the space

of germs of holomorphic functions. We apply Kashiwara-Kawai duality theorem on

holonomic systems [3] to the residue pairing and show that the kernel of the above

analytic functional can be described in terms of partial differential operators. This

result ensures in particular the computability of the Grothendieck local residues.
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In §3, we give a framework in the Weyl algebra, and develop there a method for

computing Grothendieck local residues. The key ingredient of the present method

is the annihilating ideal in the Weyl algebra of the given zero-dimensional algebraic

local cohomology class. We show that the use of generators of the annihilating ideal

in the Weyl algebra reduces the computation of the local residues to that of linear

equations.

In §4, we derive an algorithm for computing Grothendieck local residues that

exploits only first order partial differential operators. The resulting algorithm (Algo-

rithm R) is efficient and thus can be available in use for actual computations in many

cases. We also present an criterion to the applicability of this algorithm.

In §5, we give an example to illustrate an effectual way of using Algorithm R.

In Appendix, we present an algorithm that outputs the first order partial differen-

tial operators which annihilate a direct summand in question of the given algebraic

local cohomology class.

2. Local duality theorem

Let OX be the sheaf of holomorphic functions on X = Cn and F a regular sequence

given by n holomorphic functions f1, . . . , fn on X . Denote by I the ideal of OX

generated by f1, . . . , fn and Z the zero-dimensional variety

V (I) = {z ∈ X | f1(z) = · · · = fn(z) = 0}
of the ideal I consisting of finitely many points.

There is a canonical mapping ι from the sheaf of n-th extension groups

ExtnOX
(OX/I, Ωn

X) to the sheaf of n-th algebraic local cohomology groups

Hn
[Z](Ω

n
X) with support on Z:

ι : ExtnOX
(OX/I, Ωn

X) −→ Hn
[Z](Ω

n
X)

where Ωn
X is the sheaf of holomorphic n-forms on X . We denote by ωF =

[

dz

f1 · · · fn

]

the image by the mapping ι of the Grothendieck symbol
[

dz

f1 . . . fn

]

∈ ExtnOX
(OX/I, Ωn

X),

i.e.,

(1) ωF = ι

([

dz

f1 . . . fn

])

∈ Hn
[Z](Ω

n
X),

where dz = dz1 ∧ · · · ∧ dzn. Let ωF ,β denote the germ at β ∈ Z of the algebraic local

cohomology class ωF :

ωF ,β ∈ Hn
[β](Ω

n
X),

where Hn
[β](Ω

n
X) stands for the algebraic local cohomology supported at β.
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Let Hn
{β}(Ω

n
X) be the sheaf of n-th local cohomology groups at β ∈ Z and let

Resβ : Hn
{β}(Ω

n
X) → C be the local residue map. Recall that the mapping

Hn
{β}(Ω

n
X) ×OX,β −→ Hn

{β}(Ω
n
X)

composed with the local residue map Resβ defines a natural pairing between two

topological vector spaces Hn
{β}(Ω

n
X) and OX,β . Thus, the algebraic local cohomology

class ωF ,β ∈ Hn
[β](Ω

n
X) which also belongs to Hn

{β}(Ω
n
X) induces a linear functional

Resβ(ωF ) that acts on OX,β . Namely, Resβ(ωF ) is defined to be

Resβ(ωF)(ϕ(z)) = Resβ(ϕ(z)ωF ,β)

for ϕ(z) ∈ OX,β , β ∈ Z. We consider the kernel space Ker of the linear functional

Resβ(ωF ) defined to be

Ker = {ψ(z) ∈ OX,β | Resβ(ωF)(ψ(z)) = 0}.
Now we are going to give an alternative description of the kernel space Ker in terms

of partial differential operators.

Let DX be the sheaf on X of linear partial differential operators. Then the sheaves

Ωn
X , Hn

[β](Ω
n
X) and Hn

[Z](Ω
n
X) are right DX -modules. Note also that OX and Hn

[β](OX)

have a structure of left DX -modules. We denote by AnnDX
(ωF) the right ideal of

DX consisting of linear partial differential operators which annihilate the cohomology

class ωF :

AnnDX
(ωF ) = {P ∈ DX | ωFP = 0}.

Note that, if we set ωF = σFdz with σF ∈ Hn
[Z](OX), the right ideal AnnDX

(ωF) can

be rewritten as

AnnDX
(ωF ) = {P ∈ DX | P ∗σF = 0},

where P ∗ stands for the formal adjoint operator of P .

The DX -module DX/AnnDX
(ωF ) is isomorphic to Hn

[Z](Ω
n
X). We thus in partic-

ular have the following theorem (cf. [2], [3], [7]);

Theorem 2.1. — Let F be a regular sequence given by n holomorphic functions and ωF
an algebraic local cohomology class defined by (1) whose support contains a point β.

(i) DX/AnnDX
(ωF ) is a regular singular holonomic system.

(ii) DX/AnnDX
(ωF ) is simple at each point β ∈ Z.

The theorem implies the folloiwng result on the local cohomology solution space of

the holonomic system DX/AnnDX
(ωF);

Corollary 2.2. — Let β ∈ Z. Then

HomDX
(DX/AnnDX

(ωF),Hn
{β}(Ω

n
X)) = HomDX

(DX/AnnDX
(ωF),Hn

[β](Ω
n
X))

= CωF ,β

holds.
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The above result means that the holonomic system DX/AnnDX
(ωF ) completely

characterize the algebraic local cohomology class ωF as its solution.

Example 2.3(cf. [1]). — Let F = {f1, f2} be a regular sequence and I be the ideal in

C[x, y] generated by functions f1 and f2 given below. Let jF (x, y) = det

(

∂(f1, f2)

∂(x, y)

)

be the Jacobian of f1 and f2. We fix the lexicographical ordering x � y and use the

term ordering � in computations of Gröbner basis of I.

(i) Let f1 = x(x2 − y3 − y4), f2 = x2 − y3. We have I = 〈x2 − y3, xy4, y7〉 and

V (I) = {(0, 0)} with the multiplicity 11. The algebraic local cohomology class ωF =
[

dx∧dy
f1f2

]

is supported only at the origin (0, 0). The annihilating ideal AnnDX
(ωF) of

ωF is generated by multiplication operators x(x2 − y3 − y4), x2 − y3 and a first order

differential operator P = 3x ∂
∂x

+ 2y ∂
∂y

− 12. By solving the system of differential

equations ωFy7 = ωFxy4 = ωF(x2 − y3) = ωFP = 0 together with the formula

jF (x, y)ωF = 11δ(0,0)dx ∧ dy where δ(0.0) =
[

1
xy

]

∈ H2
[(0,0)](OX) is the delta function

with support at the origin, we have the following representation of ωF ;

ωF =

[(

1

x5y
+

1

x3y4
+

1

xy7

)

dx ∧ dy
]

.

(ii) Let f1 = x and f2 = (x2 − y3)(x2 − y3 − y4). We have I = 〈x, y7 + y6〉 and its

primary decomposition I = 〈x, y + 1〉 ∩ 〈x, y6〉. The annihilating ideal AnnDX
(ωF)

of the algebraic local cohomology class ωF =
[

dx∧dy
f1f2

]

is generated by x, y7 + y6 and

P = (y2 + y) ∂
∂y

− 5y − 5. We have a representation

[(

1

xy
− 1

xy2
+

1

xy3
− 1

xy4
+

1

xy5
− 1

xy6

)

dx ∧ dy
]

+

[

dx ∧ dy
x(y + 1)

]

of ωF by solving the system of differential equations ωFx = ωF(y6 + y7) = ωFP = 0

together with the formula jF (x, y)ωF = (6δ(0,0) + δ(0,−1))dx ∧ dy where δ(0,−1) =
[

1
x(y+1)

]

is the delta function with support at (0,−1).

(iii) Let f1 = x2 − y3 − y4 and f2 = x(x2 − y3). We have I = 〈x2 − y4 −
y3, xy4, y8 + y7〉 and its primary decomposition I = 〈x, y+1〉∩ 〈x2 − y4 − y3, xy4, y7〉.
The variety {(0,−1)} is simple and {(0, 0)} is of multiplicity 11. The annihilating

ideal AnnDX
(ωF ) of the algebraic local cohomology class ωF =

[

dx∧dy
f1f2

]

is generated

by x2 − y4 − y3, xy4, y8 + y7 and P = (4xy + 3x) ∂
∂x

+ (2y2 + 2y) ∂
∂y

− 12y − 12. We

have a representation of ωF as

[(

1

xy
+

1

x5y
− 1

xy2
+

1

xy3
− 1

xy4
+

1

x3y4
+

1

xy5
− 1

xy6
+

1

xy7

)

dx ∧ dy
]

+

[

− dx ∧ dy
x(y + 1)

]
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by solving ωF(x2 − y3 − y4) = ωFxy4 = ωF(y8 + y7) = ωFP = 0 together with the

formula jF (x, y)ωF = (11δ(0,0) + δ(0,−1))dx ∧ dy.

Example 2.4([4]). — Let f = x3+y7+xy5. We consider the regular sequence given by

partial derivarives f1 = 3x2+y5 and f2 = 5xy4+7y6 of f . The primary decomposition

of the ideal I = 〈f1, f2〉 is given by 〈3125x + 151263, 25y + 147〉 ∩ I0 where I0 =

〈3x2 + y5, 5xy4 + 7y6, y8〉.
For a direct summand ω1 with support at {(− 151263

3125 ,− 147
25 )}of the algebraic local

cohomology class ωF =
[

dx∧dy
f1f2

]

, the annihilating ideal AnnDX
(ω1) is given by 〈25y+

147, 3125x+ 151263〉DX.

For the other direct summand ω0 with support at the origin (0, 0), its annihilating

ideal AnnAn
(ω0) is generated by the ideal I0 and the second order differential operator

y
∂2

∂y2
+

(

− 43

18
y4 +

84

5
xy

) ∂2

∂x2
+

( 50

147
y + 9

) ∂

∂y

+

(

6250

1361367
y4 +

125

9261
y3 +

(

− 78125

3176523
x− 5

63

)

y2 +
( 8125

64827
x+

252

5

)

y − 25

441
x

)

∂

∂x

− 762939453125

218041257467152161
y7 +

6103515625

494424620106921
y6 − 8300781250

30270895108587
y5

+
156250000

205924456521
y4 +

(

− 37841796875

211896265760109
x+

781250

1400846643

)

y3

+
( 927734375

1441471195647
x− 78125

1361367

)

y2 +
(

− 1953125

1400846643
x+

21250

64827

)

y

− 390625

66706983
x+

650

441
.

Kashiwara-Kawai duality theory on holonomic systems ([3]) together with Theorem

2.1 implies the following result which gives a characterization of the space Ker.

Theorem 2.5. — Let Ker be the kernel space of the residue mapping Resβ(ωF). Then

Ker = {Rϕ(z) | ϕ(z) ∈ OX,β , R ∈ AnnDX
(ωF)}

holds.

Observe that the stalk at β ∈ Z of OX/I is a finite dimensional vector space,

the quotient space Ker /I ⊂ OX/I is a one codimensional vector subspace. Hence,

if generators of the ideal AnnDX
(ωF ) are given, the determination of Ker can be

reduced to a problem in the finite dimensional vector space.

Example 2.6. — Let f1 = x3 and f2 = y2+2x2+3x. The variety V (I) of the ideal I =

〈f1, f2〉 is the origin {(0, 0)} with the multiplicity 6. Let ωF =
[

dx∧dy
f1f2

]

∈ H2
[(0,0)](Ω

n
X).

Then the right ideal AnnDX
(ωF ) is generated by f1, f2 and the first order differential

operator

P = 6x
∂

∂x
+ (3y + 2xy)

∂

∂y
+ (−2x− 15).
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