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TORIC VARIETIES
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Abstract. — We study the link between the positive divisors supported on the ex-

ceptional divisor of the minimal resolution of a rational double point and the root

systems of Dynkin diagrams. Then, we calculate the toric variety corresponding to

the fundamental Weyl chamber.

Résumé(Singularités ADE des surfaces, chambres et variétés toriques). — Nous étudions

le lien entre les diviseurs positifs à support sur le diviseur exceptionnel de la résolu-

tion minimale d’un point double rationnel et les systèmes de racine des diagrammes

de Dynkin. Puis, nous calculons la variété torique correspondant à la chambre fonda-

mentale de Weyl.

1. Introduction

A singularity of a normal analytic surface is rational if the geometric genus of

the surface doesn’t change by a resolution of the singularity. These singularities

are rather simple among surface singularities since they are absolutely isolated and

their resolutions have some nice combinatoric properties. A classification of rational

singularities is done by the dual graph of the minimal resolution according to their

multiplicities (see [11] for details and related references).

First, DuVal observed that the dual graph of the minimal resolution of a rational

singularity of multiplicity 2, called rational double point, with algebraically closed

field is one of the Dynkin diagrams An, Dn, E6, E7 and E8, briefly ADE diagrams

(see [2] or [4]). This means that the intersection matrix associated to the dual graph

of the minimal resolution of a rational double point is the same as the Cartan matrix

of the corresponding Dynkin diagram.
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The negative definiteness of the intersection matrix of the exceptional divisor of a

resolution of a normal surface singularity permits us to study on a set of certain posi-

tive divisors supported on the exceptional divisor, which will be called the semigroup

of Lipman. By using this set, we can associate a toric variety with a weighted graph

whose intersection matrix is negative definite (see [1]).

In this work, motivated by a question appeared in [9], we give a geometric con-

struction of the roots of an ADE diagram, listed in [3] (see Planche I,IV,V,VI,VII).

Following [14], we observe that the semigroup of Lipman associated with an ADE

diagram is the same as the fundamental Weyl chamber of the corresponding root sys-

tem. In the last section, using [1], we describe the toric variety corresponding to the

fundamental Weyl chamber of an ADE diagram (see [1], [15]).

2. Rational Singularities

Let S be a germ at ξ of a complex two dimensional normal space with a singularity

at ξ. A resolution of S is a complex nonsingular surface with a proper map π : X → S

such that its restriction to X−π−1(ξ) is an isomorphism and X−π−1(ξ) is dense in X .

A resolution π : X → S is called minimal resolution if any other resolution π′ : X ′ → S

factorizes by π. It is well known that the exceptional divisor E = π−1(ξ) of π is

connected and of dimension 1 (see [7], theorem V.5.2). Let us denote by E1, . . . , En

the irreducible components of E. The intersection matrix M(E) associated with E

is defined by the intersection (Ei · Ej) of the components Ei and Ej , which is the

intersection number of Ei and Ej if i 6= j, and the first Chern class of the normal

bundle to Ei if i = j. It is a negative definite matrix (see [13]).

Let G denote the free abelian group generated by the irreducible components of E:

G =
{

∑n
i=1 miEi, mi ∈ Z

}

.

The elements of G are called the divisors supported on E. The support of a divisor

Y =
∑

i miEi is the set of the components for which mi 6= 0. In the free abelian

group G, the intersection matrix M(E) defines a symmetric bilinear form. We shall

denote (Y · Z) the value of this bilinear form on a pair (Y, Z) of elements in G. An

element of G in which all the coefficients are non-negative and at least one is positive,

is called a positive divisor.

Theorem 2.1(see[2]). — The singularity ξ of S is a rational singularity if and only

if the arithmetic genus 1
2 (Y · Y +

∑n
i=1 mi(wi − 2)) + 1 of each positive divisor Y =

∑n
i=1 miEi in G is 6 0 where wi = −(Ei · Ei).

Assume that π : X → S is a resolution of a normal surface singularity which is not

necessarily rational. Let f be an element of the maximal ideal M of OS,ξ. Then the

divisor (π∗f) of f on X is written as (π∗f) = Y + Tf where Y is a positive divisor

supported on the exceptional divisor E of π and Tf , called the strict transform of f
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by π, intersects E in finitely many point at most. Since ((π∗f) · Ei) = 0 for all i, we

obtain (Y ·Ei) 6 0 for all i. The inverse is true when the singularity ξ is rational. We

mean that, if Y is a positive divisor on X such that (Y ·Ei) = −(T ·Ei) for all i, then

there exists a function f in M such that (π∗f) = Y + T (see [2]). Now, as in [12]

(see section 18), let us consider the set

E+(E) = {Y ∈ G | (Y · Ei) 6 0 for all i}

By [18], this set is not empty. It is an additive semigroup: For Y1, Y2 ∈ E+(E), we

have Y1 + Y2 ∈ E+(E).

Definition 2.2. — The set E+(E) is called the semigroup of Lipman.

Since E is connected, for all Y =
∑

miEi in E+(E), we have mi > 1 for all i. A

partial order on E+(E) is defined as follows: For two elements Y1 =
∑n

i=1 aiEi and

Y2 =
∑n

i=1 biEi of E+(E), we say Y1 6 Y2 if ai 6 bi for all i. The smallest element

of this set is called the fundamental cycle of the resolution π. The proposition 4.1

in [10], gives the following algorithm to construct the fundamental cycle of a given E:

Let us denote by Z the fundamental cycle of π. Consider Z1 =
∑n

i=1 Ei. If

(Z1 ·Ei) 6 0 for all i, then Z1 = Z. If else, there exists an Ei1 such that (Z1 ·Ei1) > 0;

in this case, we put Z2 = Z1 + Ei1 and we see whether (Z2 · Ei) 6 0 for all i. The

term Zj , (j > 1), of the sequence satisfies, either (Zj · Ei) 6 0 for all i, then we put

Z = Zj , or there is an irreducible component Eij
such that (Zj · Eij

) > 0, then we

put Zj+1 = Zj + Eij
. Thus the fundamental cycle of π is the first cycle Zk of this

sequence such that (Zk · Ei) 6 0 for all i. By the same method, we can construct all

other elements of E+(E) (see [14] or [17]).

The following result of Artin characterize what an exceptional divisor of a resolution

of a rational singularity looks like:

Theorem 2.3(see[2]). — A singularity of a normal analytic surface in CN is rational

if and only if the arithmetic genus of the fundamental cycle of the exceptional divisor

of a resolution of the singularity vanishes.

This gives:

Corollary 2.4(see[2]). — The exceptional divisor of any resolution of a rational sin-

gularity is normal crossing, with each Ei nonsingular and of genus zero, and any two

distinct components intersect transversally at most in one point.

A proof of this corollary can be found also in [17].

Then the dual graph associated with the exceptional divisor of a resolution of a

rational singularity, in which each Ei is represented by a vertex and each intersection

point is represented by an edge between the vertices corresponding to the intersecting

components, is a tree. Each vertex in the dual graph is weighted by −(Ei ·Ei). Con-

versely, with a given weighted graph, by plumbing, we can associate a configuration
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of curves embedded in a nonsingular surface and, if such a configuration of curves

satisfies theorem 2.3, its contraction gives a rational singularity of a normal analytic

surface (see [6], [11]).

Example 2.5. — A configuration of curves associated with an ADE diagram is con-

tracted to a rational singularity of a normal analytic surface.

Moreover, we have:

Proposition 2.6(see[2]). — Let π : X → S be the minimal resolution of the rational

singularity ξ of S. Then the multiplicity of S at ξ equals −(Z · Z) where Z is the

fundamental cycle of π.

Recall that the minimal resolution is characterized by (Ei · Ei) 6 −2 for all ir-

reducible components Ei of the exceptional divisor. A rational double point is a

rational singularity for which the fundamental cycle of the minimal resolution satis-

fies (Z · Z) = −2. We know that a rational double point of a surface is defined by

the power series with the form f(x, y) + z2 = 0. By using the results given above, we

deduce:

Proposition 2.7(see[2] or [4]). — A normal analytic surface singularity is a rational

double point if and only if the exceptional divisor of the minimal resolution of the

singularity is a configuration of curves associated with one of the ADE diagrams.

3. Root systems of rational double points

There is a well known construction of ADE diagrams starting from a semisimple

Lie algebra. In this section, we are interested in the inverse of that construction, as

suggested in [9]. We will see that, using the geometry of a Dynkin diagram, we can

obtain the roots of the corresponding semisimple Lie algebra. This gives a partial

answer to the question of Ito and Nakamura (see [9], p. 194).

Let V be an euclidean space endowed with a positive definite symmetric bilinear

form (, ). A reflection s on V is an orthogonal transformation s : V → V such that,

for v ∈ V , s(v) = −v and it fixes pointwise the hyperplane Hv = {u ∈ V | (u, v) = 0}

of V . We can describe the reflection by the formula sv(u) = u − 2(u,v)
(v,v) v.

Definition 3.1. — A subset R of V is called a root system if

(i) it is finite, generates V and doesn’t contain 0,

(ii) for every v ∈ R, there exists a unique reflection sv such that sv(R) = R,

(iii) for every v ∈ R, the only multiples of v in R are ±v,

(iv) for u, v ∈ R, we have 2(u,v)
(v,v) ∈ Z.

The finite group generated by the reflections is called the Weyl group.

See [8] for more details.
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In what follows, E will denote a configuration of curves associated with an ADE

diagram, called ADE configuration. Now, following [14], (see p. 158), we want to

establish the relation between the root systems and the semigroup of Lipman of E.

Denote by E1, . . . , En the irreducible components of E. We know that (Ei ·Ej) equals

−2 if i = j and equals 0 or 1 if i 6= j (see [4] or [12]). Now, consider the following

subset of G:

R(E) = {Y ∈ G | (Y · Y ) = −2}.

Proposition 3.2(see[14]). — The set R(E) is a root system.

Replacing the inner product in the definition above by the symmetric bilinear form

defined by the intersection matrix M(E), we can see that R(E) satisfies the conditions

of the definition above.

We will call root divisors the elements of R(E). By definition, E1, . . . , En

and −E1,· · · , −En are root divisors but Ei − Ej is not a root divisor since

(Ei − Ej · Ei − Ej) 6= −2 for any i 6= j. Let us denote B = {E1, . . . , En}. We can

see that B is a vector space basis of R(E) in G ⊗Z R and every element Y in R(E)

can be written as the sum of Ei’s with coefficients all nonnegative or all nonpositive

(compare with [8], pp. 47-48). If we denote by R+(E) the set of the elements of R(E)

with coefficients all nonnegative, then we have R(E) = R+(E) ∪ (−R+(E)).

Proposition 3.3(see[14]). — Let Z =
∑n

i=1 aiEi be the fundamental cycle of E. Then,

for each root divisor Y =
∑n

i=1 miEi in R(E), we have m1 6 a1, . . . , mn 6 an.

The fundamental cycle is called the highest (or biggest) root divisor in R(E).

Proof. — Since E is the exceptional divisor of the minimal resolution of a rational

double point, we have (Z · Z) = −2. So Z ∈ R(E). Assume that there is a positive

divisor Y in R(E) such that Y > Z and (Y · Y ) = −2. So we have Y = Z + D where

D is a positive divisor. This gives (Y · Y ) = (Z · Z) + 2(Z · D) + (D · D). Thus

2(Z ·D) = −(D ·D). Since Z is the fundamental cycle, we have (Z ·Ei) 6 0 for all i,

so (Z · D) 6 0. This implies D = 0.

Hence, we can calculate the highest root divisor by the algorithm of Laufer given

in the preceding section. The following proposition gives an algorithm to construct

all elements of R(E) from Z by using B:

Theorem 3.4. — Let R+(E) = {Y0, . . . , Yk} with Yk = Z. Then, for each j =

0, . . . , k − 1, there exists an element Yt in R+(E) such that (Yt · Ei) = ki < 0 and

Yj = Yt + kiEi for some i. Inversely, for each Ei in B such that (Yt · Ei) = ki < 0,

Yt + kiEi is a root divisor in R(E).

Proof. — The existence of at least one irreducible component Ei in each Yj such that

(Yj ·Ei) < 0 is due to negative definiteness of the intersection matrix. Then, theorem

follows from the fact that (Yt + kiEi) · (Yt + kiEi) = −2.
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