THE CHERN NUMBERS OF THE NORMALIZATION OF AN ALGEBRAIC THREEFOLD WITH ORDINARY SINGULARITIES

by

Shoji Tsuboi

Abstract. — By a classical formula due to Enriques, the Chern numbers of the nonsingular normalization X of an algebraic surface S with ordinary singularities in $\mathbb{P}^3(\mathbb{C})$ are given by $\int_X c_1^2 = n(n-4)^2 - (3n-16)m + 3t - \gamma$, $\int_X c_2 = n(n^2 - 4n + 6) - (3n - 8)m + 3t - 2\gamma$, where n = the degree of S, m = the degree of the double curve (singular locus) D_S of S, t = the cardinal number of the triple points of S, and γ =the cardinal number of the cuspidal points of S. In this article we shall give similar formulas for an algebraic threefold \overline{X} with ordinary singularities in $\mathbb{P}^4(\mathbb{C})$ (Theorem 1.15, Theorem 2.1, Theorem 3.2). As a by-product, we obtain a numerical formula for the Euler-Poincaré characteristic $\chi(X, \mathcal{T}_X)$ with coefficient in the sheaf \mathcal{T}_X of holomorphic vector fields on the non-singular normalization X of \overline{X} (Theorem 4.1).

Résumé (Les nombres de Chern de la normalisée d'une variété algébrique de dimension 3 à points singuliers ordinaires)

Par une formule classique due à Enriques, les nombres de Chern de la normalisation non singulière X de la surface algébrique S avec singularités ordinaires dans $\mathbb{P}^3(\mathbb{C})$ sont donnés par $\int_X c_1^2 = n(n-4)^2 - (3n-16)m + 3t - \gamma, \int_X c_2 = n(n^2 - 4n + 6) - (3n-8)m + 3t - 2\gamma$, où n est le degré de S, m est le degré de la courbe double (lieu singulier) D_S de S, t est le nombre de points triples de S, et γ est le nombre de points cuspidaux de S. Dans cet article nous donnons des formules similaires pour une "threefold" algébrique \overline{X} avec singularités ordinaires dans $\mathbb{P}^4(\mathbb{C})$ (Théorème 1.15, Théorème 2.1, Théorème 3.2). Comme application, nous obtenons une formule numérique pour la caractéristique d'Euler-Poincaré $\chi(X, \mathcal{T}_X)$ à coefficients dans le faisceau \mathcal{T}_X de champs de vecteurs holomorphes de la normalisation non singulière X de \overline{X} (Théorème 4.1).

2000 *Mathematics Subject Classification.* — Primary 14G17; Secondary 14G30, 32C20, 32G05. *Key words and phrases.* — Chern number, threefold, hypersurface, ordinary singularity, normalization.

© Séminaires et Congrès 10, SMF 2005

This work is supported by the Grant-in-Aid for Scientific Research (No. 13640083), The Ministry of Education, Science and Culture, Japan.

S. TSUBOI

Introduction

An irreducible hypersurface \overline{X} in the complex projective 4-space $\mathbb{P}^4(\mathbb{C})$ is called an *algebraic threefold with ordinary singularities* if it is locally isomorphic to one of the following germs of hypersurface at the origin of the complex 4-space \mathbb{C}^4 at every point of \overline{X} :

	(i)	w = 0	(simple point)
	(ii)	zw = 0	(ordinary double point)
(0, 1)	(iii)	yzw = 0	(ordinary triple point)
(0.1)	(iv)	xyzw = 0	(ordinary quadruple point)
	(v)	$xy^2 - z^2 = 0$	(cuspidal point)
	(vi) u	$v(xy^2 - z^2) = 0$	(stationary point)

where (x, y, z, w) is the coordinate on \mathbb{C}^4 . These singularities arise if we project a nonsingular threefold embedded in a sufficiently higher dimensional complex projective space to its four dimensional linear subspace by a *generic* linear projection ([**R**]), though the singularities (iv) and (vi) above do not occur in the surface case. This fact can also be proved by use of the classification theory of multi-germs of *locally stable* holomorphic maps ([**M-3**], [**T-1**]). Indeed, in the threefold case, the pair of dimensions of the source and target manifolds belongs to the so-called *nice range*([**M-2**]). Hence the multi-germ of a *generic* linear projection at the inverse image of any point of \overline{X} is *stable*, *i.e.*, stable under small deformations ([**M-4**]).

In [**T-2**] we have proved, for an algebraic threefold \overline{X} with ordinary singularities in $\mathbb{P}^4(\mathbb{C})$ which is free from quadruple points, a formula expressing the Euler number $\chi(X)$ of the non-singular normalization X of \overline{X} in terms of numerical characteristics of \overline{X} and its singular loci. Note that, by the Gauss-Bonnet formula, the Euler number $\chi(X)$ is equal to the Chern number $\int_X c_3$, where c_3 denotes the top Chern class of X. In §1 we shall extend this formula to the general case where \overline{X} admits quadruple points. In this general case, we need to blow up \overline{X} twice. First, along the quadruple point locus, and secondly, along the triple point locus. It turns out that the existence of quadruple points adds only the term $4\#\Sigma \overline{q}$ to the formula, where $\#\Sigma \overline{q}$ denotes the cardinal number of the quadruple point locus $\Sigma \overline{q}$. Using Fulton-MacPherson's intersection theory, especially, the excess intersection formula ($[\mathbf{F}]$, Theorem 6.3, p. 102), the blow-up formula (ibid., Theorem 6.7, p. 116), the double point formula (ibid., Theorem 9.3, p. 166) and the ramification formula (ibid., Example 3.2.20, p. 62), we compute the push-forwards $f_*[D]^2$ and $f_*[D]^3$ for D the inverse image of the singular locus of \overline{X} by the normalization map in order to know the Segre classes $s(\overline{J}, \overline{X})_i$ $(0 \leq i \leq 2)$ of the singular subscheme \overline{J} defined by the Jacobian ideal of \overline{X} .

In §2 we shall give a formula for the Chern number $\int_X c_1^3 = -[K_X]^3$, where $[K_X]$ is the canonical class of X. The expressions for $f_*[D]^2$ and $f_*[D]^3$ obtained in §1 enable us to compute it, because $[K_X] = f^*[\overline{X} + K_Y] - [D]$ by the double point formula, where

SÉMINAIRES & CONGRÈS 10

 K_Y is the canonical divisor of $\mathbb{P}^4(\mathbb{C})$. In §3 we shall give a formula for the Chern number $\int_X c_1 c_2$. In fact, we shall calculate the Euler-Poincaré characteristic $\chi(X, K_X)$ with coefficient in the canonical line bundle of X, which is equal to $-(1/24) \int_X c_1 c_2$ by the Riemann-Roch theorem. In §4, as a by-product, we shall give a numerical formula for the Euler-Poincaré characteristic $\chi(X, \mathcal{T}_X)$ with coefficient in the sheaf \mathcal{T}_X of holomorphic tangent vector fields on X.

Notation and Terminology

Throughout this article we fix the notation as follows:

 $Y := \mathbb{P}^4(\mathbb{C})$: the complex projective 4-space, \overline{X} : an algebraic threefold with ordinary singularities in Y, \overline{J} : the singular subscheme of \overline{X} defined by the Jacobian ideal of \overline{X} , \overline{D} : the singular locus of \overline{X} , \overline{T} : the triple point locus of \overline{X} , which is equal to the singular locus of \overline{D} , \overline{C} : the cuspidal point locus of \overline{X} , precisely, its closure, since we always consider \overline{C} contains the stationary points, $\Sigma \overline{q}$: the quadruple point locus of \overline{X} , $\Sigma \overline{s}$: the stationary point locus of \overline{X} , $n_{\overline{X}}: X \to \overline{X}$: the normalization of \overline{X} , $f: X \to Y$: the composite of the normalization map $n_{\overline{X}}$ and the inclusion $\overline{\iota}$: $\overline{X} \hookrightarrow Y$, J: the scheme-theoretic inverse of \overline{J} by f, D, T, C and Σq : the inverse images of \overline{D} , \overline{T} , \overline{C} and $\Sigma \overline{q}$ by f, respectively, $\Sigma s = T \cap C$: the intersection of T and C. We put $n := \deg \overline{X}$ (the degree of \overline{X} in $\mathbb{P}^4(\mathbb{C})$), $m := \deg \overline{D}$, $t := \deg \overline{T}$, $\gamma := \deg \overline{C}$.

Note that \overline{T} and \overline{C} are non-singular curves, intersecting transversely at $\Sigma \overline{s}$, and that the normalization X of \overline{X} is also non-singular. Calculating by use of local coordinates,

(i) J contains D, and the *residual scheme* to D in J is the reduced scheme C, *i.e.*, $\mathcal{I}_J = \mathcal{I}_D \otimes_{\mathcal{I}_X} \mathcal{I}_C$, where $\mathcal{I}_J, \mathcal{I}_D, \mathcal{I}_C$ are the ideal sheaves of J, D and C, respectively (*cf.* [**F**], Definition 9.2.1, p.160);

(ii) D is a surface with ordinary singularities, whose singular locus is T,

we can easily see the following:

(iii) D is the double point locus of the map $f : X \to Y$, *i.e.*, the closure of $\{q \in X \mid \#f^{-1}(f(q)) \ge 2\};$

(iv) the map $f_{|D}: D \to \overline{D}$ is generically two to one, simply ramified at C;

(v) the map $f_{|T}: T \to \overline{T}$ is generically three to one, simply ramified at Σs .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

S. TSUBOI

Furthermore, we need the following diagram consisting of two fiber squares:

(0.2)
$$\begin{array}{ccc} X'' & \xrightarrow{f'} Y'' \\ & & & \downarrow^{\sigma_{\overline{T}'}} \\ X' & \xrightarrow{f'} Y' \\ & & & \downarrow^{\sigma_{\Sigma \overline{q}}} \\ X & \xrightarrow{f} Y, \end{array}$$

which is defined as follows:

 $\sigma_{\Sigma \overline{q}}: Y' \to Y$: the blowing-up of Y along the quadruple point locus $\Sigma \overline{q}$ of \overline{X} , \overline{X}' : the proper inverse image of \overline{X} by $\sigma_{\Sigma \overline{q}}$,

 $X' := X \times_{\overline{X}} \overline{X}'$: the fiber product of X and \overline{X}' over \overline{X} ,

 $n_{\overline{X}'}: X' \to \overline{X}'$: the projection to the second factor of $X \times_{\overline{X}} \overline{X}'$, which is nothing but the normalization of \overline{X}' ,

 $f': X' \to Y'$: the composite of the normalization map $n_{\overline{X}'}$ and the inclusion $\overline{\iota}': \overline{X}' \hookrightarrow Y'$,

 Σq : the inverse image of the quadruple point locus $\Sigma \overline{q}$ of \overline{X} by f,

 $\tau_{\Sigma q}: X' \to X$: the projection to the first factor of $X \times_{\overline{X}} \overline{X}'$, which is nothing but the blowing-up of X along Σq ,

 $\overline{D}', \overline{T}', \overline{C}'$ and $\Sigma \overline{s}'$: the proper inverse images of $\overline{D}, \overline{T}, \overline{C}$ and $\Sigma \overline{s}$ by $\sigma_{\Sigma \overline{q}}$, respectively. D', T' and C': the proper inverse images of D, T and C by $\tau_{\Sigma q}$, which are equal to the inverse images of $\overline{D}', \overline{T}'$ and \overline{C}' by f', respectively,

 $\Sigma s'$: the inverse image of Σs by $\tau_{\Sigma q}$, which is equal to $T' \cap C'$,

 $\sigma_{\overline{T}'}: Y'' \to Y'$: the blowing-up of Y' along \overline{T}' ,

 \overline{X}'' : the proper inverse image of \overline{X}' by $\sigma_{\overline{T}'}$,

 $X'' := X' \times_{\overline{X'}} \overline{X''}$: the fiber product of X' and $\overline{X''}$ over $\overline{X'}$,

 $n_{\overline{X}''}: X'' \to \overline{X}''$: the projection to the second factor of $X' \times_{\overline{X}'} \overline{X}''$, which is nothing but the normalization of \overline{X}''

 $f'': X'' \to Y''$: the composite of the normalization map $n_{\overline{X}''}$ and the inclusion $\iota'': \overline{X}'' \hookrightarrow Y''$,

 $\tau_{T'}: X'' \to X'$: the projection to the first factor of $X' \times_{\overline{X'}} \overline{X}''$, which is nothing but the blowing-up of X' along T',

 $\overline{D}'', \overline{T}'', \overline{C}''$ and $\Sigma \overline{s}''$: the proper inverse images of $\overline{D}', \overline{T}', \overline{C}'$ and $\Sigma \overline{s}'$ by $\sigma_{\overline{T}}$, respectively,

D'', T'' and C'': the proper inverse images of D', T' and C' by $\tau_{T'}$, which are equal to the inverse images of $\overline{D}'', \overline{T}''$ and \overline{C}'' by f'', respectively,

 $\Sigma s''$: the inverse image of $\Sigma s'$ by $\tau_{T'}$, which is equal to $T'' \cap C''$.

SÉMINAIRES & CONGRÈS 10

We also use the following notation throughout this article:

- $[\alpha]$: the rational equivalence class of an algebraic cycle α ,
- $\alpha \cdot \beta$: the intersection class of two algebraic cycle classes $[\alpha]$ and $[\beta]$.

Finally, we give the definitions of *regular embeddings* and *local complete intersection morphisms* of schemes.

Definition 0.1. — We say a closed embedding $\iota : X \to Y$ of schemes is a *regular* embedding of codimension d if every point in X has an affine neighborhood U in Y, such that if A is the coordinate ring of U, I the ideal of A defining X, then I is generated by a regular sequence of length d.

If this is the case, the conormal sheaf $\mathcal{I}/\mathcal{I}^2$, where \mathcal{I} is the ideal sheaf of X in Y, is a locally free sheaf of rank d. The normal bundle to X in Y, denoted by $N_X Y$, is the vector bundle on X whose sheaf of sections is dual to $\mathcal{I}/\mathcal{I}^2$. Note that the normal bundle $N_X Y$ is canonically isomorphic to the normal cone $C_X Y$ for a (closed) regular embedding $\iota : X \to Y$ since the canonical map from $\operatorname{Sym}(\mathcal{I}/\mathcal{I}^2)$ to $S^{\cdot} := \sum_{k=0}^{\infty} \mathcal{I}^k/\mathcal{I}^{k+1}$ is an isomorphism (cf. [**F**], Appendix B, B.7).

Definition 0.2. — A morphism $f : X \to Y$ is called a *local complete intersection* morphism of codimension d if f factors into a (closed) regular embedding $\iota : X \to P$ of some constant codimension e, followed by a smooth morphism $p : P \to Y$ of constant relative dimension d + e.

1. The computation of $\int_X c_3$

In $[\mathbf{T-2}]$ we have proved, for an algebraic threefold \overline{X} with ordinary singularities in $\mathbb{P}^4(\mathbb{C})$ which is free from quadruple points, a formula expressing the the Euler number $\chi(X)$ of the non-singular normalization X of \overline{X} in terms of numerical characteristics of \overline{X} and its singular loci. We recall its proof briefly. We have first proved the following:

Theorem 1.1 ([**T-2**], **Theorem 2.1**). — We have a linear pencil $\overline{\mathcal{L}} := \bigcup_{\lambda \in \mathbb{P}^1} \overline{X_{\lambda}}$ on \overline{X} , consisting of hyperplane sections $\overline{X_{\lambda}}$ of \overline{X} in $\mathbb{P}^4(\mathbb{C})$, whose pull-back $\mathcal{L} := \bigcup_{\lambda \in \mathbb{P}^1} X_{\lambda}$ to X by the normalization map $f : X \to \overline{X}$ has the following properties: There exists a finite set $\{\lambda_1, \ldots, \lambda_c\}$ of points of \mathbb{P}^1 such that

(i) X_{λ} is non-singular for λ with $\lambda \neq \lambda_i$ $(1 \leq i \leq c)$, and

(ii) X_{λ_i} is a surface with only one isolated ordinary double point which is contained in $X \smallsetminus f^{-1}(\overline{C_{\infty}})$ for any *i* with $1 \le i \le c$,

where c is the class of \overline{X} , i.e., the degree of the top polar class $[M_3]$ of \overline{X} in $\mathbb{P}^4(\mathbb{C})$ (cf. [**P**]), and $\overline{C_{\infty}}$ the base point locus of the linear pencil $\overline{\mathcal{L}}$, which is an irreducible curve with $m \ (= \ \text{deg }\overline{D})$ ordinary double points in $\mathbb{P}^2(\mathbb{C})$ whose degree is equal to $n \ (= \ \text{deg }\overline{X})$.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005