THE CHERN NUMBERS OF THE NORMALIZATION OF AN ALGEBRAIC THREEFOLD WITH ORDINARY SINGULARITIES

by

Shoji Tsuboi

Abstract

By a classical formula due to Enriques, the Chern numbers of the nonsingular normalization X of an algebraic surface S with ordinary singularities in $\mathbb{P}^{3}(\mathbb{C})$ are given by $\int_{X} c_{1}^{2}=n(n-4)^{2}-(3 n-16) m+3 t-\gamma, \int_{X} c_{2}=n\left(n^{2}-4 n+\right.$ $6)-(3 n-8) m+3 t-2 \gamma$, where $n=$ the degree of $S, m=$ the degree of the double curve (singular locus) D_{S} of $S, t=$ the cardinal number of the triple points of S, and $\gamma=$ the cardinal number of the cuspidal points of S. In this article we shall give similar formulas for an algebraic threefold \bar{X} with ordinary singularities in $\mathbb{P}^{4}(\mathbb{C})$ (Theorem 1.15, Theorem 2.1, Theorem 3.2). As a by-product, we obtain a numerical formula for the Euler-Poincare characteristic $\chi\left(X, \mathcal{T}_{X}\right)$ with coefficient in the sheaf \mathcal{T}_{X} of holomorphic vector fields on the non-singular normalization X of \bar{X} (Theorem 4.1).

Résumé (Les nombres de Chern de la normalisée d'une variété algébrique de dimension 3 à points singuliers ordinaires)

Par une formule classique due à Enriques, les nombres de Chern de la normalisation non singulière X de la surface algébrique S avec singularités ordinaires dans $\mathbb{P}^{3}(\mathbb{C})$ sont donnés par $\int_{X} c_{1}^{2}=n(n-4)^{2}-(3 n-16) m+3 t-\gamma, \int_{X} c_{2}=n\left(n^{2}-4 n+\right.$ $6)-(3 n-8) m+3 t-2 \gamma$, où n est le degré de S, m est le degré de la courbe double (lieu singulier) D_{S} de S, t est le nombre de points triples de S, et γ est le nombre de points cuspidaux de S. Dans cet article nous donnons des formules similaires pour une "threefold" algébrique \bar{X} avec singularités ordinaires dans $\mathbb{P}^{4}(\mathbb{C})$ (Théorème 1.15 , Théorème 2.1 , Théorème 3.2). Comme application, nous obtenons une formule numérique pour la caractéristique d'Euler-Poincaré $\chi\left(X, \mathcal{T}_{X}\right)$ à coefficients dans le faisceau \mathcal{T}_{X} de champs de vecteurs holomorphes de la normalisation non singulière X de \bar{X} (Théorème 4.1).

[^0]
Introduction

An irreducible hypersurface \bar{X} in the complex projective 4 -space $\mathbb{P}^{4}(\mathbb{C})$ is called an algebraic threefold with ordinary singularities if it is locally isomorphic to one of the following germs of hypersurface at the origin of the complex 4 -space \mathbb{C}^{4} at every point of \bar{X} :
$\left\{\begin{array}{lrl}\text { (i) } & w=0 & \\ \text { (ii) } & z w=0 & \\ \text { (simple point) } \\ \text { (iii) } & y z w & =0 \\ & \text { (ordinary double point) } \\ \text { (iv) } & x y z w & =0 \\ & \text { (ordinary triple point) } \\ \text { (v) } & x y^{2}-z^{2} & =0 \\ & \text { (cuspidal point) } \\ \text { (vi) } w\left(x y^{2}-z^{2}\right) & =0 & \\ \text { (stationary point) }\end{array}\right.$
where (x, y, z, w) is the coordinate on \mathbb{C}^{4}. These singularities arise if we project a nonsingular threefold embedded in a sufficiently higher dimensional complex projective space to its four dimensional linear subspace by a generic linear projection ($[\mathbf{R}]$), though the singularities (iv) and (vi) above do not occur in the surface case. This fact can also be proved by use of the classification theory of multi-germs of locally stable holomorphic maps ([M-3], [T-1]). Indeed, in the threefold case, the pair of dimensions of the source and target manifolds belongs to the so-called nice range $([\mathbf{M}-2])$. Hence the multi-germ of a generic linear projection at the inverse image of any point of \bar{X} is stable, i.e., stable under small deformations ([M-4]).

In [T-2] we have proved, for an algebraic threefold \bar{X} with ordinary singularities in $\mathbb{P}^{4}(\mathbb{C})$ which is free from quadruple points, a formula expressing the Euler number $\chi(X)$ of the non-singular normalization X of \bar{X} in terms of numerical characteristics of \bar{X} and its singular loci. Note that, by the Gauss-Bonnet formula, the Euler number $\chi(X)$ is equal to the Chern number $\int_{X} c_{3}$, where c_{3} denotes the top Chern class of X. In $\S 1$ we shall extend this formula to the general case where \bar{X} admits quadruple points. In this general case, we need to blow up \bar{X} twice. First, along the quadruple point locus, and secondly, along the triple point locus. It turns out that the existence of quadruple points adds only the term $4 \# \Sigma \bar{q}$ to the formula, where $\# \Sigma \bar{q}$ denotes the cardinal number of the quadruple point locus $\Sigma \bar{q}$. Using Fulton-MacPherson's intersection theory, especially, the excess intersection formula ($[\mathbf{F}]$, Theorem 6.3, p. 102), the blow-up formula (ibid., Theorem 6.7, p.116), the double point formula (ibid., Theorem 9.3, p. 166) and the ramification formula (ibid., Example 3.2.20, p.62), we compute the push-forwards $f_{*}[D]^{2}$ and $f_{*}[D]^{3}$ for D the inverse image of the singular locus of \bar{X} by the normalization map in order to know the Segre classes $s(\bar{J}, \bar{X})_{i}$ $(0 \leqslant i \leqslant 2)$ of the singular subscheme \bar{J} defined by the Jacobian ideal of \bar{X}.

In $\S 2$ we shall give a formula for the Chern number $\int_{X} c_{1}^{3}=-\left[K_{X}\right]^{3}$, where $\left[K_{X}\right]$ is the canonical class of X. The expressions for $f_{*}[D]^{2}$ and $f_{*}[D]^{3}$ obtained in $\S 1$ enable us to compute it, because $\left[K_{X}\right]=f^{*}\left[\bar{X}+K_{Y}\right]-[D]$ by the double point formula, where
K_{Y} is the canonical divisor of $\mathbb{P}^{4}(\mathbb{C})$. In $\S 3$ we shall give a formula for the Chern number $\int_{X} c_{1} c_{2}$. In fact, we shall calculate the Euler-Poincaré characteristic $\chi\left(X, K_{X}\right)$ with coefficient in the canonical line bundle of X, which is equal to $-(1 / 24) \int_{X} c_{1} c_{2}$ by the Riemann-Roch theorem. In $\S 4$, as a by-product, we shall give a numerical formula for the Euler-Poincaré characteristic $\chi\left(X, \mathcal{T}_{X}\right)$ with coefficient in the sheaf \mathcal{T}_{X} of holomorphic tangent vector fields on X.

Notation and Terminology

Throughout this article we fix the notation as follows:
$Y:=\mathbb{P}^{4}(\mathbb{C}):$ the complex projective 4 -space,
\bar{X} : an algebraic threefold with ordinary singularities in Y,
$\bar{J}:$ the singular subscheme of \bar{X} defined by the Jacobian ideal of \bar{X},
\bar{D} : the singular locus of \bar{X},
\bar{T} : the triple point locus of \bar{X}, which is equal to the singular locus of \bar{D},
\bar{C} : the cuspidal point locus of \bar{X}, precisely, its closure, since we always consider \bar{C}
contains the stationary points,
$\Sigma \bar{q}$: the quadruple point locus of \bar{X},
$\Sigma \bar{s}$: the stationary point locus of \bar{X},
$n_{\bar{X}}: X \rightarrow \bar{X}:$ the normalization of \bar{X},
$\underline{f}: X \rightarrow Y$: the composite of the normalization map $n_{\bar{X}}$ and the inclusion $\bar{\imath}$:
$\bar{X} \hookrightarrow Y$,
J : the scheme-theoretic inverse of \bar{J} by f,
D, T, C and Σq : the inverse images of $\bar{D}, \bar{T}, \bar{C}$ and $\Sigma \bar{q}$ by f, respectively,
$\Sigma s=T \cap C$: the intersection of T and C.
We put
$n:=\operatorname{deg} \bar{X}\left(\right.$ the degree of \bar{X} in $\left.\mathbb{P}^{4}(\mathbb{C})\right), \quad m:=\operatorname{deg} \bar{D}, \quad t:=\operatorname{deg} \bar{T}, \quad \gamma:=\operatorname{deg} \bar{C}$.
Note that \bar{T} and \bar{C} are non-singular curves, intersecting transversely at $\Sigma \bar{s}$, and that the normalization X of \bar{X} is also non-singular. Calculating by use of local coordinates, we can easily see the following:
(i) J contains D, and the residual scheme to D in J is the reduced scheme C, i.e., $\mathcal{I}_{J}=\mathcal{I}_{D} \otimes_{\mathcal{I}_{X}} \mathcal{I}_{C}$, where $\mathcal{I}_{J}, \mathcal{I}_{D}, \mathcal{I}_{C}$ are the ideal sheaves of J, D and C, respectively (cf. [F], Definition 9.2.1, p. 160);
(ii) D is a surface with ordinary singularities, whose singular locus is T,
(iii) D is the double point locus of the map $f: X \rightarrow Y$, i.e., the closure of $\left\{q \in X \mid \# f^{-1}(f(q)) \geqslant 2\right\} ;$
(iv) the map $f_{\mid D}: D \rightarrow \bar{D}$ is generically two to one, simply ramified at C;
(v) the map $f_{\mid T}: T \rightarrow \bar{T}$ is generically three to one, simply ramified at Σs.

Furthermore, we need the following diagram consisting of two fiber squares:

which is defined as follows:
$\sigma_{\Sigma \bar{q}}: Y^{\prime} \rightarrow Y$: the blowing-up of Y along the quadruple point locus $\Sigma \bar{q}$ of \bar{X},
\bar{X}^{\prime} : the proper inverse image of \bar{X} by $\sigma_{\Sigma \bar{q}}$,
$X^{\prime}:=X \times \bar{X}^{\prime} \bar{X}^{\prime}$: the fiber product of X and \bar{X}^{\prime} over \bar{X},
$n \bar{X}^{\prime}: X^{\prime} \rightarrow \bar{X}^{\prime}:$ the projection to the second factor of $X \times \bar{X}^{\prime}$, which is nothing but the normalization of \bar{X}^{\prime},
$f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$: the composite of the normalization map $n_{\bar{X}^{\prime}}$ and the inclusion
$\bar{\iota}^{\prime}: \bar{X}^{\prime} \hookrightarrow Y^{\prime}$,
Σq : the inverse image of the quadruple point locus $\Sigma \bar{q}$ of \bar{X} by f,
$\tau_{\Sigma q}: X^{\prime} \rightarrow X$: the projection to the first factor of $X \times \bar{X}^{\prime} \bar{X}^{\prime}$, which is nothing but the blowing-up of X along Σq,
$\bar{D}^{\prime}, \bar{T}^{\prime}, \bar{C}^{\prime}$ and $\Sigma \bar{s}^{\prime}$: the proper inverse images of $\bar{D}, \bar{T}, \bar{C}$ and $\Sigma \bar{s}$ by $\sigma_{\Sigma \bar{q}}$, respectively.
D^{\prime}, T^{\prime} and C^{\prime} : the proper inverse images of D, T and C by $\tau_{\Sigma q}$, which are equal to the inverse images of $\bar{D}^{\prime}, \bar{T}^{\prime}$ and \bar{C}^{\prime} by f^{\prime}, respectively,
Σs^{\prime} : the inverse image of Σs by $\tau_{\Sigma q}$, which is equal to $T^{\prime} \cap C^{\prime}$,
$\sigma_{\bar{T}^{\prime}}: Y^{\prime \prime} \rightarrow Y^{\prime}:$ the blowing-up of Y^{\prime} along \bar{T}^{\prime},
$\bar{X}^{\prime \prime}$: the proper inverse image of \bar{X}^{\prime} by $\sigma_{\bar{T}^{\prime}}$,
$X^{\prime \prime}:=X^{\prime} \times \bar{X}^{\prime} \bar{X}^{\prime \prime}$: the fiber product of X^{\prime} and $\bar{X}^{\prime \prime}$ over \bar{X}^{\prime},
$n_{\bar{X}^{\prime \prime}}: X^{\prime \prime} \rightarrow \bar{X}^{\prime \prime}$: the projection to the second factor of $X^{\prime} \times \bar{X}^{\prime} \bar{X}^{\prime \prime}$, which is nothing but the normalization of $\bar{X}^{\prime \prime}$
$f^{\prime \prime}: X^{\prime \prime} \rightarrow Y^{\prime \prime}$: the composite of the normalization map $n \bar{X}^{\prime \prime}$ and the inclusion
$\iota^{\prime \prime}: \bar{X}^{\prime \prime} \hookrightarrow Y^{\prime \prime}$,
$\tau_{T^{\prime}}: X^{\prime \prime} \rightarrow X^{\prime}$: the projection to the first factor of $X^{\prime} \times \bar{X}^{\prime} \bar{X}^{\prime \prime}$, which is nothing but the blowing-up of X^{\prime} along T^{\prime},
$\bar{D}^{\prime \prime}, \bar{T}^{\prime \prime}, \bar{C}^{\prime \prime}$ and $\Sigma \bar{s}^{\prime \prime}$: the proper inverse images of $\bar{D}^{\prime}, \bar{T}^{\prime}, \bar{C}^{\prime}$ and $\Sigma \bar{s}^{\prime}$ by $\sigma_{\bar{T}}$, respectively,
$D^{\prime \prime}, T^{\prime \prime}$ and $C^{\prime \prime}$: the proper inverse images of D^{\prime}, T^{\prime} and C^{\prime} by $\tau_{T^{\prime}}$, which are equal to the inverse images of $\bar{D}^{\prime \prime}, \bar{T}^{\prime \prime}$ and $\bar{C}^{\prime \prime}$ by $f^{\prime \prime}$, respectively, $\Sigma s^{\prime \prime}$: the inverse image of Σs^{\prime} by $\tau_{T^{\prime}}$, which is equal to $T^{\prime \prime} \cap C^{\prime \prime}$.

We also use the following notation throughout this article:
$[\alpha]$: the rational equivalence class of an algebraic cycle α, $\alpha \cdot \beta$: the intersection class of two algebraic cycle classes $[\alpha]$ and $[\beta]$.

Finally, we give the definitions of regular embeddings and local complete intersection morphisms of schemes.

Definition 0.1. - We say a closed embedding $\iota: X \rightarrow Y$ of schemes is a regular embedding of codimension d if every point in X has an affine neighborhood U in Y, such that if A is the coordinate ring of U, I the ideal of A defining X, then I is generated by a regular sequence of length d.

If this is the case, the conormal sheaf $\mathcal{I} / \mathcal{I}^{2}$, where \mathcal{I} is the ideal sheaf of X in Y, is a locally free sheaf of rank d. The normal bundle to X in Y, denoted by $N_{X} Y$, is the vector bundle on X whose sheaf of sections is dual to $\mathcal{I} / \mathcal{I}^{2}$. Note that the normal bundle $N_{X} Y$ is canonically isomorphic to the normal cone $C_{X} Y$ for a (closed) regular embedding $\iota: X \rightarrow Y$ since the canonical map from $\operatorname{Sym}\left(\mathcal{I} / \mathcal{I}^{2}\right)$ to $S^{\cdot}:=\sum_{k=0}^{\infty} \mathcal{I}^{k} / \mathcal{I}^{k+1}$ is an isomorphism ($c f$. $[\mathbf{F}]$, Appendix B, B.7).

Definition 0.2. - A morphism $f: X \rightarrow Y$ is called a local complete intersection morphism of codimension d if f factors into a (closed) regular embedding $\iota: X \rightarrow P$ of some constant codimension e, followed by a smooth morphism $p: P \rightarrow Y$ of constant relative dimension $d+e$.

1. The computation of $\int_{X} c_{3}$

In $[\mathbf{T}-\mathbf{2}]$ we have proved, for an algebraic threefold \bar{X} with ordinary singularities in $\mathbb{P}^{4}(\mathbb{C})$ which is free from quadruple points, a formula expressing the the Euler number $\chi(X)$ of the non-singular normalization X of \bar{X} in terms of numerical characteristics of \bar{X} and its singular loci. We recall its proof briefly. We have first proved the following:

Theorem 1.1 ([T-2], Theorem 2.1). - We have a linear pencil $\overline{\mathcal{L}}:=\bigcup_{\lambda \in \mathbb{P}^{1}} \overline{X_{\lambda}}$ on \bar{X}, consisting of hyperplane sections $\overline{X_{\lambda}}$ of \bar{X} in $\mathbb{P}^{4}(\mathbb{C})$, whose pull-back $\mathcal{L}:=\bigcup_{\lambda \in \mathbb{P}^{1}} X_{\lambda}$ to X by the normalization map $f: X \rightarrow \bar{X}$ has the following properties: There exists a finite set $\left\{\lambda_{1}, \ldots, \lambda_{c}\right\}$ of points of \mathbb{P}^{1} such that
(i) X_{λ} is non-singular for λ with $\lambda \neq \lambda_{i}(1 \leqslant i \leqslant c)$, and
(ii) $X_{\lambda_{i}}$ is a surface with only one isolated ordinary double point which is contained in $X \backslash f^{-1}\left(\overline{C_{\infty}}\right)$ for any i with $1 \leqslant i \leqslant c$,
where c is the class of \bar{X}, i.e., the degree of the top polar class $\left[M_{3}\right]$ of \bar{X} in $\mathbb{P}^{4}(\mathbb{C})$ (cf. $[\mathbf{P}]$), and $\overline{C_{\infty}}$ the base point locus of the linear pencil $\overline{\mathcal{L}}$, which is an irreducible curve with $m(=\operatorname{deg} \bar{D})$ ordinary double points in $\mathbb{P}^{2}(\mathbb{C})$ whose degree is equal to $n(=\operatorname{deg} \bar{X})$.

[^0]: 2000 Mathematics Subject Classification. - Primary 14G17; Secondary 14G30, 32C20, 32G05.
 Key words and phrases. - Chern number, threefold, hypersurface, ordinary singularity, normalization.
 This work is supported by the Grant-in-Aid for Scientific Research (No. 13640083), The Ministry of Education, Science and Culture, Japan.

