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GENERALIZED GINZBURG-CHERN CLASSES
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Shoji Yokura

Abstract. — For a morphism f : X → Y with Y being nonsingular, the Ginzburg-
Chern class of a constructible function α on the source variety X is defined to be the
Chern-Schwartz-MacPherson class of the constructible function α followed by capping
with the pull-back of the Segre class of the target variety Y . In this paper we give
some generalizations of the Ginzburg-Chern class even when the target variety Y is
singular and discuss some properties of them.

Résumé(Classes de Ginzburg-Chern généralisées). — Pour un morphisme algébrique
f : X → Y où la variété Y est non singulière, la classe de Ginzburg-Chern de la
fonction constructible α sur la variété source X est définie comme la classe de Chern-
Schwartz-MacPherson de la fonction constructible α suivi du cap-produit par l’image
réciproque de la classe de Segre de la variété but Y . Dans cet article nous donnons
quelques généralisations de la classe de Ginzburg-Chern y compris lorsque la variété
but Y est singulière et nous en discutons quelques propriétés.

1. Introduction

In [G1] Ginzburg introduced a certain homomorphism from the abelian group of

Lagrangian cycles to the Borel-Moore homology group

cbiv : L(X1 × X2) −→ H∗(X1 × X2),

which he called a bivariant Chern class. The construction or definition of the ho-

momorphism cbiv given in [G1] is not direct, but in his survey article [G2] he gives

an explicit description of it. It assigns to a Lagrangian cycle associated to a sub-

variety Y ⊂ X1 × X2 the relative Chern-Mather class of the fibers of the projection
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pY : Y → X2. The projection pY is the restriction of the projection p2 : X1×X2 → X2

to the subvariety Y . Let ν : Ŷ → Y be the Nash blow-up and T̂ Y the tautological

Nash tangent bundle over Ŷ . Then the above relative Chern-Mather class is defined

by

cbiv(ΛY ) := iY ∗ν∗

(
c(T̂ Y − ν∗p∗Y TX2) ∩ [Ŷ ]

)

where iY : Y → X1×X2 is the inclusion. Then it follows from the projection formula

and from pY = p2 ◦ iY that

cbiv(ΛY ) = iY ∗

( 1

p∗Y c(TX2)
∩ cM (Y )

)

= p∗2s(TX2) ∩ iY ∗c
M (Y ).

Here s(TX2) denotes the Segre class of the tangent bundle TX2.

Since the Chern-Schwartz-MacPherson class ([BS], [M], [Sw1], [Sw2] etc.) is a

linear combination of Chern-Mather classes, the above homomorphism cbiv can be

defined for any morphism π : X → Y from a possibly singular variety X to a smooth

variety Y and for any constructible function on the target variety X . Namely we can

define the following homomorphism

π∗s(TY ) ∩ c∗ : F (X) −→ H∗(X ;Z)

where c∗ : F (X) → H∗(X ;Z) is the usual Chern-Schwartz-MacPherson class trans-

formation. This “twisted” Chern-Schwartz-MacPherson class shall be called the

Ginzburg-Chern class.

On the other hand, in [Y3] we showed that the bivariant Chern class ([Br], [FM])

for any morphism with nonsingular target variety necessarily has to be the Ginzburg-

Chern class. To be more precise, if there exists a bivariant Chern class γ : F → H

from the Fulton-MacPherson bivariant theory of constructible functions to the Fulton-

MacPherson bivariant homology theory, then for any morphism f : X → Y with

Y being nonsingular and any bivariant constructible function α ∈ F(X → Y ) the

following holds

γf (α) = f∗s(TY ) ∩ c∗(α),

where γf : F(X
f

−→ Y ) → H(X
f

−→ Y ).

Quickly speaking, this theorem follows from the simple observation that for α ∈

F(X → Y ) ⊂ F (X) we have

c∗(α) = γf (α) • c∗(Y ),

where • on the right-hand-side is the bivariant product. Thus a näıve solution for

γf (α) is the following “quotient”

γf (α) = “
c∗(α)

c∗(Y )
”.
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It turns out that in the case when the target variety Y is nonsingular this “quotient”

is well-defined and it is nothing but

“
c∗(α)

c∗(Y )
” =

c∗(α)

f∗c(TY )
= f∗s(TY ) ∩ c∗(α).

From now on the Ginzburg-Chern class of α shall be denoted by γGin(α) or γGin
f (α)

emphasizing the morphism f .

As one sees, for the definition of the Ginzburg-Chern class the nonsingularity of

the target variety Y is clearly essential. In this paper, we put aside the bivariant-

theoretic aspect of the Ginzburg-Chern class ([Y4], [Y5], [Y6]) and, using Nash blow-

ups and also resolutions of singularities we introduce reasonably modified versions of

the Ginzburg-Chern class, even when the target variety is arbitrarily singular. We

discuss some properties of them and in particular we obtain some results concerning

the convolution product of them.
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2. Generalized Ginzburg-Chern classes

The Ginzburg-Chern class is a unique natural transformation satisfying a certain

normalization in the following sense:

Theorem 2.1([Y2, Theorem (2.1)]). — For the category of Y -varieties, i.e., morphisms

π : X → Y , with Y being a nonsingular variety, γGin
π : F (X) → H∗(X ;Z) is the

unique natural transformation from the constructible functions to the homology theory

such that for a smooth variety X we have

(2.2) γGin
π (11X) = c(Tπ) ∩ [X ],

where Tπ := TX − π∗TY is the relative virtual tangent bundle. Namely, for any

commutative diagram

X1

f
//

π1   
AA

AA
AA

X2

π2~~}}
}}

}}

Y
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where f is proper, we have the following commutaive diagram

F (X1)
f∗

//

γGin
π1

��

F (X2)

γGin
π2

��

H∗(X1)
f∗

// H∗(X2).

A natural question or problem on the Ginzburg-Chern class is whether or not one

can extend it to the case when the target variety Y is singular and we want to see if

a theorem similar to the above one holds.

Suppose that Y is singular and we consider the Nash blow-up ν : Ŷ → Y and the

following fiber square

X̂
ν̂

//

π̂
��

X

π
��

Ŷ ν
// Y.

Then we define the homomorphism

γ̂Gin
π : F (X) −→ H∗(X ;Z)

by

(2.3) γ̂Gin
π := ν̂∗

(
π̂∗s(T̂ Y ) ∩ c∗(ν̂

∗α)
)
.

This class shall be called a Nash-type Ginzburg-Chern class, abusing words. Then we

have the following theorem:

Theorem 2.4. — Let Y be a possibly singular variety. Then, for any commutative

diagram

X1

f
//

π1   
AA

AA
AA

X2

π2~~}}
}}

}}

Y

where f is proper, we have the following commutative diagram

F (X1)
f∗

//

γ̂Gin
π1

��

F (X2)

γ̂Gin
π2

��

H∗(X1)
f∗

// H∗(X2).
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Proof. — First we recall the following fact ([Er, Proposition 3.5], [FM, Axiom

(A23)]): for any fiber square

W ′
g′

//

h′

��

W

h
��

Z ′
g

// Z,

the following diagram commutes

F (W )
g′∗

//

h′

∗

��

F (W ′)

h∗

��

F (Z)
g∗

// F (Z ′).

Now we have the following commutative diagrams:

X̂1

ν̂1
//

f̂

  
@@

@@
@@

@

π̂1

��

X1

f

~~~~
~~

~~
~~

π1

��

X̂2

ν̂2
//

π̂2~~}}
}}

}}
}}

X2

π2
  

AA
AA

AA
AA

Ŷ
ν

// Y.

Then by definition we have

γ̂Gin
π2

(f∗α) = ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ c∗(ν̂
∗

2f∗α)
)

= ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ c∗(f̂∗ν̂
∗

1α)
)

= ν̂2∗

(
π̂∗

2s(T̂ Y ) ∩ f̂∗c∗(ν̂
∗

1α)
)

= ν̂2∗f̂∗

(
f̂∗π̂∗

2s(T̂ Y ) ∩ c∗(ν̂
∗

1α)
)

= f∗ν̂1∗

(
π̂∗

1s(T̂ Y ) ∩ c∗(ν̂
∗

1α)
)

= f∗γ̂
Gin
π1

(α).

Motivated by the definition of the Nash-type Ginzburg-Chern class, we give another

modification of the Ginzburg-Chern class via a resolution of singularities. Let ρ : Ỹ →
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