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ON THE CONNECTION BETWEEN AFFINE AND

PROJECTIVE FUNDAMENTAL GROUPS OF

LINE ARRANGEMENTS AND CURVES

by

David Garber

Abstract. — In this note we prove a decomposition related to the affine fundamental

group and the projective fundamental group of a line arrangement and a reducible

curve with a line component. We give some applications to this result.

Résumé(Sur le rapport entre les groupes fondamentaux d’arrangements affine et projectifs
de droites et de courbes)

Dans cet article, nous montrons une décomposition reliée au groupe fondamental

affine et au groupe fondamental projectif d’un arrangement de droites et d’une courbe

réductible avec une composante linéaire. Nous donnons quelques applications de ce

résultat.

1. Introduction

The fundamental group of complements of plane curves is a very important topo-

logical invariant with many different applications. There are two such invariants: the

affine fundamental group of a plane curve, which is the fundamental group of its affine

complement, and its projective fundamental group, which is the fundamental group of

its projective complement.

Oka [7] has proved the following interesting result, which sheds new light on the

connection between these two fundamental groups:

Theorem 1.1(Oka). — Let C be a curve in CP2 and let L be a general line to C, i.e.

L intersects C in only simple points. Then, we have a central extension:

1 −→ Z −→ π1(CP
2 − (C ∪ L)) −→ π1(CP

2 − C) −→ 1
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Since L is a general line to C, then:

π1(CP
2 − (C ∪ L)) = π1(C

2 − C).

Hence, we get the following interesting connection between the two fundamental

groups:

1 −→ Z −→ π1(C
2 − C) −→ π1(CP

2 − C) −→ 1

A natural question is:

Question 1.2. — Under which conditions does this short exact sequence split? Notice

that when it does, we have the following decomposition:

π1(C
2 − C) ∼= π1(CP

2 − C) ⊕ Z

A real line arrangement in C2 is a finite union of copies of C in C2, whose equations

can be written by real coefficients. Some families of real line arrangements were

already proved to satisfy this condition, see [2].

Here, we show that:

Theorem 1.3. — If L is a real line arrangement, then such a decomposition holds:

π1(C
2 − L) ∼= π1(CP

2 − L) ⊕ Z

Actually, one can see that the same argument holds for arbitrary line arrangements

(see Theorem 2.3). Moreover, we give a different condition for this decomposition to

hold: If C is a plane curve with a line component, i.e. C = C′ ∪ L where L is a line,

we have that π1(C
2 − C) = π1(CP2 − C) ⊕ Z too.

These results can be applied to the computation of the affine fundamental groups

of line arrangements, since the projective fundamental group is an easier object to

deal with than the affine fundamental group.

The paper is organized as follows. In Section 2 we prove Theorem 1.3. The other

condition is discussed in Section 3, and in the last section we give some applications.

2. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. — Let L be a real line arrangement with n lines. Let L be

an arbitrary line which intersects L transversally. By the following remark, one can

reduce the proof to the case where L is a line which intersects transversally all the

lines in L and all the intersection points of L with lines in L are to the left of all the

intersection points of L (see Figure 1 for such an example, where the arrangement L

consists of L1, L2, L3 and L4).
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Figure 1. An example

Remark 2.1. — We have proved in [3] that in a real line arrangement, if a line crosses

a multiple intersection point from one side to its other side (see Figure 2), the fun-

damental groups remain unchanged (see [3, Theorem 4.13] for this property of the

action
∆
=).

Figure 2. A line crosses a multiple intersection point.

By this argument, we can start with any transversal line L as “the line at infinity”.

Then, by using this property repeatedly, we can push this line over all the intersection

points of the arrangement L, without changing the corresponding fundamental group.

This process will be terminated when all the intersection points of L with L are placed

to the left of all the intersection points of L, and this is the reduced case.

By this remark, we continue the proof of Theorem 1.3 for the reduced case, where

all the intersection points of L with L are placed to the left of all the intersection

points of L. We compute presentations for π1(CP2 − L) and π1(CP2 − (L ∪ L)) by

braid monodromy techniques (the Moishezon-Teicher algorithm) and the van Kampen

Theorem. The original techniques are introduced in [6] and [5] respectively. Shorter

presentations of these techniques can be found in [2] and [3].

We first have to compute the lists of Lefschetz pairs of the arrangements, which

are the pairs of indices of the components intersected at the intersection point, where

we numerate the components locally near the point (see [2]). Since L is an arbitrary

real line arrangement, its list of Lefschetz pairs is

([a1, b1], . . . , [ak, bk]),
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where k is the number of intersection points in L. If we assume that the additional

line L crosses all the lines of L transversally to the left of all the intersection points

in L, the list of Lefschetz pairs of L ∪ L is

([a1, b1], . . . , [ak, bk], [n, n + 1], . . . , [1, 2])

By the braid monodromy techniques and the van Kampen Theorem, the group

π1(CP2−L) has n generators {x1, . . . , xn} and π1(CP2−(L∪L)) has n+1 generators

{x1, . . . , xn, xn+1}. Moreover, the first k relations of π1(CP2 − (L ∪ L)) are equal to

the k relations of π1(CP2 − L). Let us denote this set of relations by R.

Now, we have to find out the relations induced by the n intersection points of the

line L with the arrangement L. Moreover, we have to add at last the appropriate

projective relations.

First, we compute the relations induced by the n intersection points of the line L

with the arrangement L. The Lefschetz pair of the (k + 1)th point (which is the first

intersection point of L with L) is [n, n + 1]. Hence, its corresponding initial skeleton

is shown in Figure 3.

n+1n−1 n321

Figure 3. Initial skeleton of the (k + 1)th point

Since the list of pairs [a1, b1], . . . , [ak, bk] is induced by a line arrangement, it is

easy to see that:

∆〈ak, bk〉 · · ·∆〈a1, b1〉 = ∆〈1, n〉,

where ∆〈1, n〉 is the generalized half-twist on the segment [1, n].

Therefore, applying this braid on the initial skeleton yields the resulting skeleton

for this point which is presented in Figure 4.

n+1n−1 n321

Figure 4. Final skeleton of the (k + 1)th point

By the van Kampen Theorem, the corresponding relation is:

[xnxn−1 · · ·x2x1x
−1
2 · · ·x−1

n
, xn+1] = 1

Let Pi be the ith intersection point, where k + 2 6 i 6 k + n. Its corresponding

Lefschetz pair is [n− (i−k)+1, n− (i−k)+2], and hence its initial skeleton is shown

in Figure 5.

Now, we first have to apply on it the following braid:

∆〈n − (i − k) + 2, n − (i − k) + 3〉 · · ·∆〈n, n + 1〉
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n−(i−k)+2n−(i−k)+1 n+1n21

Figure 5. Initial skeleton of the ith point

and afterwards we have to apply on the resulting skeleton ∆〈1, n〉, which equals to

∆〈ak, bk〉 · · ·∆〈a1, b1〉

as before. Hence, Figure 6 presents the resulting skeleton for the ith point.

i−ki−k−1 n+1n21

n−(i−k)+1 n−(i−k)+2 n+1n21

n−(i−k)+1 n−(i−k)+2 n+1n21

Figure 6. Computing the final skeleton of the ith point

Again, by the van Kampen Theorem, the corresponding relation is:

[xnxn−1 · · ·xi−k+1xi−kx−1
i−k+1 · · ·x

−1
n , xn+1] = 1

To summarize, we get that the set of relations induced by the intersection points of

the additional line L is:

{[xnxn−1 · · ·xi−k+1xi−kx−1
i−k+1 · · ·x

−1
n

, xn+1] = 1 | 1 6 i − k 6 n}

One can easily see, by a sequence of substitutions, that actually this set of relations

is equal to the following set:

{[xi, xn+1] = 1 | 1 6 i 6 n}

Hence, we have the following presentations:

π1(CP
2 − L) = 〈x1, . . . , xn | R ; xnxn−1 · · ·x1 = 1〉

π1(CP
2 − (L ∪ L)) =

〈

x1, . . . , xn, xn+1

∣

∣

∣

R ; [xi, xn+1] = 1 , 1 6 i 6 n ;

xn+1xn · · ·x1 = 1

〉

It remains to show that these presentations imply that:

π1(CP
2 − (L ∪ L)) = Z ⊕ π1(CP

2 − L)

Denote by R(x1 ⇐ w) the set of relations R after we substitute anywhere the gener-

ator x1 by an element w in the corresponding group.
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