
Séminaires & Congrès

10, 2005, p. 71–86

ON THE PICARD GROUP FOR

NON-COMPLETE ALGEBRAIC VARIETIES

by

Helmut A. Hamm & Lê Dũng Tráng

Abstract. — In this paper we show some relations between the topology of a complex

algebraic variety and its algebraic or analytic Picard group. Some of our results

involve the subgroup of the Picard group whose elements have a trivial Chern class

and the Néron-Severi group, quotient of the Picard group by this subgroup. We are

also led to give results concerning their relations with the topology of the complex

algebraic variety.

Résumé(Sur le groupe de Picard des variétés algébriques non complètes). — Dans cet

article, nous montrons quelques relations entre la topologie d’une variété algébrique

complexe et son groupe de Picard algébrique ou analytique. Certains de nos résultats

concernent le sous-groupe du groupe de Picard dont les éléments ont une classe de

Chern triviale et le groupe de Néron-Severi, quotient du groupe de Picard par ce

sous-groupe. Nous obtenons aussi des résultats sur leurs relations avec la topologie

de la variété algébrique complexe.

1. Statements

Let X be a complex algebraic variety, i.e. a (sc. separated) integral (i.e. irreducible

and reduced) scheme of finite type over Spec C. Then we have a corresponding com-

plex space Xan. The notion of the Picard group exists in the category of complex

algebraic varieties and in the category of complex spaces, since both algebraic vari-

eties and complex spaces are locally ringed spaces. Recall that, for a locally ringed

space, the Picard group is the group of isomorphism classes of invertible sheaves. For

algebraic varieties it coincides with the Cartier divisor class group [H] II 6.15.

If X is complete, i.e. Xan is compact, both Picard groups are isomorphic to each

other by the GAGA principle: PicX ' Pic(an) Xan. If X is projective, this is a

classical result of Serre [S]; for the general case see [G2] XII Th. 4.4. This is no longer

true in general if X is not complete. This fact will be an easy consequence of Corollary
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1.3 below. A more interesting example is due to Serre, cf. [H] Appendix B 2.0.1; we

thank the referee for drawing our attention to it: there are non-singular surfaces X1

and X2 such that Xan
1 ' Xan

2 and Pic X1 6' PicX2. So Pic(an) Xan
1 ' Pic(an) Xan

2 ,

X1 is not isomorphic to X2, and we cannot have PicXj ' Pic(an) Xan
j , j = 1, 2.

We will concentrate here upon the case where X is non-singular. Remember that

we have a canonical mixed Hodge structure on the cohomology groups of Xan [D1].

As usual, if (H, F, W ) is a mixed Hodge structure on H, F is the Hodge filtration

· · · ⊃ FnHC ⊃ Fn+1HC ⊃ . . . on HC := H ⊗ C and W is the weight filtration on

HQ := H⊗ Q

· · · ⊂ WkHQ ⊂ Wk+1HQ ⊂ . . .

We write

GrW
` HQ = W`HQ/W`−1HQ and Gri

F HC = F iHC/F i+1HC.

Recall also that the Hodge filtration induces a filtration on each GrW
` HC.

In contrast to the approach of A.Grothendieck [G1] we apply transcendental meth-

ods which lead to results involving transversality conditions.

First let us study the question whether PicX is trivial:

1.1. Theorem. — Let X be a non-singular complex algebraic variety, assume that

GrW
1 H1(Xan; Q) = 0, Gr1F GrW

2 H2(Xan; C) = 0 and H2(Xan; Z) is torsion free. Then

PicX = 0, i.e. every divisor on X is a principal divisor.

Note that there is no difference between Weil and Cartier divisors here because X

is supposed to be non-singular (see [H] Chap. II 6.11.1 A). Of course, this theorem

shows that it is sufficient to suppose that H1(Xan; Q) = 0 and H2(Xan; Z) = 0 to

obtain Pic X = 0. In particular, it is not possible to distinguish X from the affine

space An = An(C) := Spec C[x1, . . . , xn] by the Picard group if Xan is contractible.

Conversely, we have:

1.2. Theorem. — Let X be a non-singular complex algebraic variety and suppose

PicX = 0. Then

GrW
1 H1(Xan; Q) = 0 and H2(Xan; Z) is torsion free.

Then we also get the following easy consequence of both theorems:

1.3. Corollary. — Let X be a non-complete non-singular irreducible complex curve,

g the genus of its non-singular compactification X. Then g = 0 if and only if the

algebraic Picard group PicX of X is trivial.

Note, however, that the analytic Picard group Pic(an) Xan is always trivial in the

case of a non-complete irreducible complex curve.

Now let us turn to the Picard group in the case where it is non-trivial. In general,

the structure of the Picard group can be quite complicated but we have a comparison

theorem:
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1.4. Theorem. — Let f : Y → X be a morphism between non-singular complex alge-

braic varieties. Suppose that the induced map

Hk(Xan; Z) −→ Hk(Y an; Z)

is bijective for k = 1, 2. Then the natural map Pic X → PicY is bijective.

As a consequence, there is a theorem of Zariski-Lefschetz type, using a correspond-

ing topological theorem [HL]. Let us state it in a slightly more general form, admitting

singularities.

Now, X might be singular. Let ClX be the Weil divisor class group of X and

Sing X the singular locus of X .

1.5. Theorem. — Let Sing X be of codimension > 2 in X and let X be a compactifica-

tion of X to a projective variety embedded in Pm = Pm(C). Let us fix a stratification

of X such that X and X r Sing X are unions of strata. Let Z be a complete intersec-

tion in Pm which is non-singular along X and intersects all strata of X transversally

in Pm , and let Y := X ∩ Z. Suppose dimY > 3. Then Cl X ' Cl Y . If X is affine,

we have Pic(an) Xan ' Pic(an) Y an, too.

Note that Cl may be replaced by Pic if X is non-singular ([H] Chap. II 6.16).

1.6. Corollary. — Suppose that X is a non-singular affine variety of dimension > 3

in Pm. Then there is a linear subspace L of Pm such that Y = X ∩L is non-singular,

dimY = 3 and PicX ' PicY , Pic(an) Xan ' Pic(an) Y an.

1.7. Corollary. — Let Y be a non-singular closed subvariety of the affine space Am,

dimY > 3. Assume that the closure Y in Pm is a non-singular complete intersection

which is transversal to Pm r Am. Then PicY = 1, Pic(an) Y an = 1.

In fact, this last corollary is a simultaneous consequence of Theorem 1.1 and 1.5,

which justifies to treat both theorems here at the same time.

We are grateful to U. Jannsen for drawing our attention to related developments

in the theory of mixed motives [J].

2. Proofs of Theorems 1.1 and 1.2

Let X be a smooth complex algebraic variety of dimension n. Recall that we can

attach to each invertible sheaf on X its first Chern class. This gives a homomorphism

α : Pic X → H2(Xan; Z). Let Pic0 X be the kernel.

Since X is separated there is a compactification X by Nagata [N]. Since X is

smooth we can obtain by Hironaka [Hi] that X is smooth and that X rX is a divisor

with normal crossings D = D1 ∪ · · · ∪ Dr, where the components D1, . . . , Dr are

smooth.
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Recall that, for all k, Wk−1H
k(Xan; Q) = 0, because X is non-singular, see [D1]

3.2.15.

2.1. Lemma. — The canonical mapping H1(X
an

; Q) → H1(Xan; Q) is injective, the

image is W1H
1(Xan; Q) ' GrW

1 H1(Xan; Q).

Proof. — Let us look at the exact sequence

H1(X
an

, Xan; Q) −→ H1(X
an

; Q) −→ H1(Xan; Q)

By Lefschetz duality H1(X
an

, Xan; Q) is dual to the vector space H2n−1(Dan; Q)

which vanishes because dim D = n − 1. This proves the injectivity.

On the other hand, the image of H1(X
an

; Q) → H1(Xan; Q) is W1H
1(Xan; Q) '

GrW
1 H1(Xan; Q) by [D1] p. 39, Cor. 3.2.17.

2.2. Proposition. — The following conditions are equivalent:

a) PicX is a finitely generated group,

b) GrW
1 H1(Xan; Q) = 0,

c) Pic0 X = 0.

Proof. — Let us first consider the case where X is complete. Since X is also supposed

to be smooth, the mixed Hodge structure on H1(Xan; Q) is pure of weight 1, so

H1(Xan; Q) = GrW
1 H1(Xan; Q).

Therefore b) is equivalent to the condition b1(Xan) = 0, where b1 denotes the first

Betti number. Now the latter can be expressed by the Hodge numbers: b1(Xan) =

h01(Xan) + h10(Xan) = 2h01(Xan). Note that Xan need not be a Kähler manifold,

since X might not be projective. Anyhow X is algebraic, and we have hpq(Xan) =

dimC Hq(Xan, Ωp
Xan) because of the definition of the Hodge filtration in general, see

[D1] (2.2.3) et (2.3.7).

So b) is equivalent to the condition that H1(Xan,OXan) = 0.

Now the exponential sequence leads to the following exact sequence:

H1(Xan; Z) −→ H1(Xan,OXan) −→ PicX
α

−→ H2(Xan; Z).

Here we use the fact that Pic X ' Pic(an) Xan ' H1(Xan,O∗

Xan) by GAGA, be-

cause X is complete. Now H1(Xan; Z) and H2(Xan; Z) are finitely generated abelian

groups, i.e. Noetherian Z-modules. In particular, PicX/ Pic0 X is finitely generated.

a) ⇒ b): By the exact sequence above, if PicX is finitely generated, the cohomology

group H1(Xan,OXan) is also a finitely generated group. But, since we consider a

complex vector space, it is a finitely generated group if and only if it is trivial.

b) ⇒ c): follows from the surjectivity of H1(Xan,OXan) → Pic0 X .

c) ⇒ a) As said before, PicX/ Pic0 X is finitely generated.

This finishes the special case where X is complete.
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Now let us turn to the general case. Since X and X are smooth we can replace

the Picard group by the Weil divisor class group, so we have an exact sequence of the

form

Zr −→ PicX −→ PicX −→ 0

see [H] II Prop. 6.5, p. 133 in the case r = 1.

a) ⇒ b): Since PicX is finitely generated, the same holds for PicX . By the first

case, H1(X
an

, Q) = 0. Now Lemma 2.1 yields GrW
1 H1(Xan; Q) = 0.

b) ⇒ c): By Lemma 2.1, H1(X
an

; Q) ' GrW
1 H1(Xan; Q) = 0, so

Pic0 X = 0

by the first case applied to X which is complete. Now, let us consider the commutative

diagram with exact rows:

Zr //

o
��

Pic X //

α
��

PicX //

α
��

0

��

H2(X
an

, Xan; Z) // H2(X
an

; Z) // H2(Xan; Z) // H3(X
an

, Xan; Z)

Here we were allowed to put the right hand vertical arrow by a diagram chase. Since

Pic0 X = 0, we know that α is injective. The five lemma shows therefore that α is

also injective. This means that Pic0 X = 0.

c) ⇒ a): This follows from the fact that Pic X/ Pic0 X is finitely generated.

Proof of Theorem 1.1. — By Proposition 2.2 we have that Pic0 X = 0, so the natural

mapping PicX → H2(Xan; Z) is injective.

If X is complete, we obtain an exact sequence

0 −→ PicX −→ H2(Xan; Z) −→ H2(Xan,OXan)

We can factorize the last map through H2(Xan; C). The image P of PicX in

H2(Xan; C) is obviously contained in the kernel of the map

H2(Xan; C) −→ H2(Xan,OXan) ' Gr0F H2(Xan; C).

This kernel is

U := F 1H2(Xan; C)

because H2(Xan; C) = F 0(H2(Xan; C)) and

Gr0F (H2(Xan; C)) = F 0(H2(Xan; C))/F 1(H2(Xan; C)).

Since Pic X injects in H2(Xan; Z), P is also invariant under conjugation, so P is

contained in U ∩ U .

We observe that, by definition of the Hodge structure (see [D1] (B) of (2.2.1)) we

have

U ∩ U ' Gr1F H2(Xan; C)
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