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THREE KEY THEOREMS ON

INFINITELY NEAR SINGULARITIES
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Heisuke Hironaka

Abstract. — The notion of infinitely near singular points is classical and well under-

stood for plane curves. We generalize the notion to higher dimensions and to develop

a general theory, in terms of idealistic exponents and certain graded algebras associ-

ated with them. We then gain a refined generalization of the classical notion of first

characteristic exponents. On the level of technical base in the higher dimensional

theory, there are some powerful tools, referred to as Three Key Theorems, which are

namely Differentiation Theorem, Numerical Exponent Theorem and Ambient Reduc-

tion Theorem.

Résumé(Trois théorèmes-clefs sur les singularités infiniment proches). — La notion de

points singuliers infiniment proches est classique et bien comprise pour les courbes

planes. On généralise cette notion aux plus grandes dimensions et on développe une

théorie générale, en termes de d’exposants idéalistes et certaines algèbres graduées as-

sociées. Ainsi on obtient une généralisation raffinée de la notion classique des premiers

exposants caractéristiques. Au niveau technique de base dans la théorie de dimension

plus grande, on a des outils puissants, appelés les Trois théorèmes-clefs. Ce sont le

Théorème de différenciation, le Théorème de l’exposant numérique et le Théorème

de réduction de l’espace ambiant.

Introduction

The notion of infinitely near singular points is classical and well understood for

plane curves. In order to generalize the notion to higher dimensions and to develop

a general theory, we introduced the notion of idealistic exponents which, in the plane

curve case, correspond to the first characteristic exponents. On the level of technical

base in the higher dimensional theory, there are some powerful tools, referred to as
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Three Key Theorems, which are namely Differentiation Theorem, Numerical Exponent

Theorem and Ambient Reduction Theorem. In this paper the three key theorems will

be proven for singular data on an ambient regular scheme of finite type over any perfect

field of any characteristics. In the proofs, the role played by differential operators

will be ubiquitous and indispensable. The notion and basic properties of differential

operators will be reviewed in the first chapter, in a manner that is purely algebraic

and abstract. In the last two chapters, we state and prove the Finite Presentation

Theorem as an application of the Key Theorems. The finite presentation is the first

step and is believed by the author to be an important milestone in the development

of a general theory of infinitely near singular points, giving an algebraic presentation

of finite type to the total aggregate of all the trees of infinitely near singular points,

geometrically diverse and intricate. The original proof of this theorem is contained

in a paper which is going to be published in the Journal of the Korean Mathematical

Society, but it is repeated here for the sake of emphasizing how important are the

roles played by the key theorems. Technically in this work at least, the general theory

of infinitely near singular points in higher dimensions heavily depends upon the use

of partial differential operators. This approach is interesting in its own right, for

instance as was shown by Jean Giraud in connection with the theory of maximal

contact, [3, 4]. As as final comment, now that the algebraic presentation of finite

type is known, the next charming project will be the study of structure theorems of

the presentation algebras which contain rich information on the given singular data.

Notation. — Our terminal interest of this paper concerns with schemes of finite type

over a perfect base field k, which may have any characteristic. However, our interest

beyond this paper will be about schemes of finite type over any excellent Dedeking

domain, which will be denoted by k. For examples, k could be any field or the ring of

integers in any algebraic number field. From time to time, however, we choose to work

on a more abstract and general scheme when possible and desirable. For instance, our

schemes may be finite type over any noetherian ring, denoted by B. This B could be

the completion of a local ring of a scheme.

1. Differential operators

For the sake of generality, let R be any commutative B-algebra, where B is a

commutative ring, and we first define a left R-algebra by the action of the elements

of R on the left:

Ω
(µ)
R/B =

(
R⊗B R

)
/Dµ+1

R

where µ is any non-negative integer and DR denotes the diagonal ideal in the tensor

product, which means the kernel

DR = Ker
(
R ⊗B R −→ R

)
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of the map induced by the multiplication law of R. We also have

DR = {δ(f) | f ∈ R} ⊂ R⊗B R, where δ(f) denotes 1 ⊗ f − f ⊗ 1

The differential operators of orders 6 µ are defined to be the elements of the dual of

Ω
(µ)
R/B. Namely, they are the elements of

Diff
(µ)
R/B = HomR

(
Ω

(µ)
R/B, R

)

We often identify elements of Diff
(µ)
R/B with R-homomorphism from R ⊗B R to R

via the natural homomorphism R ⊗B R → Ω
(µ)
R/B . In this sense, we have canonical

inclusions

Diff
(µ)
R/B ⊂ Diff

(ν)
R/B whenever µ 6 ν

Accordingly we sometimes write

DiffR/B for
⋃

∀ ν>0

Diff
(ν)
R/B

Furthermore, an element ∂ ∈ Diff
(µ)
R/B acts on elements of R by

f ∈ R 7−→ ∂(1 ⊗ f) ∈ R

in which sense ∂ will be often viewed as an element of HomB(R,R). It is B-linear but

hardly R-linear. When a B-subalgebra S of R is given, we have a natural epimorphism

R ⊗B R → R ⊗S R which maps the diagonal ideal of the former to that of the

latter. Hence we get epimorphisms Ω
(µ)
R/B → Ω

(µ)
R/S , ∀µ, so that we have canonical

monomorphisms Diff
(µ)
R/S → Diff

(µ)
R/B . In this sense, we will often view Diff

(µ)
R/S as an

R-submodule of Diff
(µ)
R/B .

Lemma 1.1. — Let T be any multiplicative subset of R. Then, viewing Ω
(µ)
R/B and

Diff
(µ)
R/B as left R-modules, we have the following compatibility with localizations by T :

Ω
(µ)
(T−1R)/B = T−1Ω

(µ)
R/B

and if Ω
(µ)
R/B is finitely generated as an R-module then

Diff
(µ)
(T−1R)/B = T−1 Diff

(µ)
R/B

Proof. — For every t ∈ T , we have f⊗1+δ(t) = 1⊗t. Here the multiplication by f⊗1

on T−1Ω
(µ)
R/B is invertible while that by δ(t) is nilpotent. Hence the multiplication by

1 ⊗ t is invertible. Namely (1 ⊗ T )−1
(
T−1Ω

(µ)
R/B

)
= T−1Ω

(µ)
R/B. Moreover, we have

Ω
(µ)

(T−1R)/B = (1 ⊗ T )−1(T ⊗ 1)−1Ω
(µ)
R/B = (1 ⊗ T )−1

(
T−1Ω

(µ)
R/B

)

which proves the first assertion of the lemma. The second assertion is by the commu-

tativity of Hom and localizations for finitely generated modules.
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Lemma 1.2. — Let P = B[z] be the polynomial ring of independent variables z =

(z1, . . . , zN). Then

Ω
(m)
P/B = P [δ(z)]/

(
δ(z)

)m+1
P [δ(z)]

which is freely generated as P -module by the images of the monomials of degrees 6 m

in the independent variables δ(z) over P . Consequently,

Diff
(m)
P/B =

∑

α∈Z
N

|α|6m

P∂α

where

∂αz
β =

{(
β
α

)
zβ−α if β ∈ α+ ZN

0

0 if otherwise

Moreover, for ζ ∈ Spec(P ) and A = P/ζ, we have

Ω
(m)
A/B = Ω

(m)
P/B

/(
ζΩ

(m)
P/B + Pδ(ζ)

)

and therefore Diff
(m)
A/B is a finite A-module.

Proof. — In fact, in P ⊗B P as left P -algebra, we may identify z⊗1 with z itself and

therefore P ⊗B P with P [1 ⊗ z] = P [δ(z)], where δ(z) =
(
δ(z1), . . . , δ(zN )

)
. Hence

Ω
(m)
P/B = P [δ(z)]/

(
δ(z)

)m+1
P [δ(z)]

which has the asserted property. Hence, its dual Diff
(m)
P/B has also the asserted prop-

erty. As for the assertion on Ω
(m)
A/B, it is enough to see that

(
(ζ ⊗ 1) + (1 ⊗ ζ)

)
P ⊗B P = ζ(P ⊗B P ) + Pδ(ζ)

Now, in the case of an affine scheme Z = Spec(A) where A is finitely generated as

B-algebra and B is noetherian, we define Ω
(µ)
Z/B to be the coherent OZ-algebra which

corresponds to the finite A-algebra Ω
(µ)
A/B . Similarly, we define Diff

(µ)
Z to be the coher-

ent OZ-module which correspond to the finite A-module Diff
(µ)
A/B. The finiteness and

coherency are due to Lemma 1.2. Since the definition of these A-modules commutes

with localizations of A by Lemma 1.1, the definitions of Ω
(µ)
Z/B and Diff

(µ)
Z/B are natu-

rally globalized for any scheme Z, not necessarily affine, of finite type over B. We call

Ω
(µ)
Z/B the OZ-algebra of µ-jets of Z over B and Diff

(µ)
Z/B the OZ-module of differential

operators of orders 6 µ of Z over B. We sometimes write Diff
(µ)
Z for Diff

(µ)
Z/B if the

reference to B is clear from the context.

Back to a general commutative B-algebra R and Z = Spec(R), we will prove two

useful lemmas on Diff
(µ)
Z/B , the first one is about compositions and the second about

commutators of differential operators of R over B. The third lemma is a consequence
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of the two which we need later. In the proofs of the first two lemmas, we will follow

the following chain of R-homomorphisms for a pair of differential operators ∂ and ∂′:

(1.1) R⊗B R
(1, 3)

−−−−−→ R⊗B R ⊗B R
(1, ∂)

−−−−−→ R⊗B R
∂′

−−−→ R

where (1, 3) : f⊗g 7→ f⊗1⊗g and (1, ∂) : f⊗g⊗h 7→ f⊗∂(f⊗g). Here ∂ ∈ Diff
(µ)
R/B

is viewed as an R-homomorphism from R ⊗B R to R through the natural surjection

R ⊗B R → Ω
(µ)
R/B . Likewise for ∂′. It should be noted that for every f ∈ R the end

image of 1 ⊗ f by the above (1.1) is exactly (∂′ ◦ ∂)(f) in the sense of composition

∂′ ◦∂ of the two differential operators as being viewed as endomorphisms of R. When

there is no ambiguity, we sometimes write ∂′∂ for ∂′ ◦ ∂.

Lemma 1.3. — Viewing ∂ ∈ Diff
(µ)
R/B and ∂′ ∈ Diff

(µ′)
R/B as endomorphisms of R, we

have the composition ∂′ ◦∂ belong to Diff
(µ+µ′)
R/B . Namely we have a natural homomor-

phism Diff
(µ)
R/B ×Diff

(µ′)
R/B → Diff

(µ+µ′)
R/B .

Proof. — What we want is that if γ denotes the composition of the chain of homo-

morphisms of (1.1) then γ(Dµ+µ′+1
R ) = 0. Define (i, j) : R⊗B R → R⊗B R⊗B R for

1 6 i < j 6 3 in the same way as the above (1, 3) and let Di,j = (i, j)(DR). Then we

have D1,3 ⊂ D1,2 +D2,3 because

1 ⊗ 1 ⊗ f − f ⊗ 1 ⊗ 1 = (1 ⊗ f ⊗ 1 − f ⊗ 1 ⊗ 1) + (1 ⊗ 1 ⊗ f − 1 ⊗ f ⊗ 1)

We then obtain

Dµ+µ′+1
1,3 ⊂ (D1,2 +D2,3)

µ+µ′+1 ⊂ Dµ′+1
1,2 +Dµ+1

2,3

Since ∂′(Dµ′+1
R ) = ∂(Dµ+1

R ) = 0, there follows γ(Dµ+µ′+1
R ) = 0.

Lemma 1.4. — For ∂ and ∂′ as above, we have the following inclusion of the commu-

tator:

[∂′, ∂] = ∂′ ◦ ∂ − ∂ ◦ ∂′ ∈ Diff
(µ′+µ−1)
R/B

Proof. — Pick any system of µ′ + µ elements gj ∈ R. Let γ be the composition of

(1.1) as before, and let γ′ be the similar composition when ∂ and ∂′ are exchanged in

(1.1). It is then enough to prove that

(1.2) γ
(µ′+µ∏

j=1

δ(gj)
)

= γ′
(µ′+µ∏

j=1

δ(gj)
)

Now, writing δi,j = (i, j) ◦ δ, we obtain

µ′+µ∏

j=1

δ1,3(gj) ≡
∑

I1∪I2=[1,µ′+µ]
I1∩I2=∅

|I1|=µ′,|I2|=µ

( ∏

k∈I1

δ1,2(gk)
)(∏

l∈I2

δ2,3(gl)
)

modulo Dµ′+1
1,2 +Dµ+1

2.3
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