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ON TOWERS OF FUNCTION FIELDS

OVER FINITE FIELDS

by

Peter Beelen, Arnaldo Garcia & Henning Stichtenoth

Abstract. — The topic of this paper is the construction of good recursive towers of

function fields over finite fields. We give an exposition of a number of known results

and illustrate the theory by several examples.

Résumé (Tours des corps de fonctions sur des corps finis). — Le sujet de cet article

est la construction de tours de corps de fonctions sur des corps finis qui sont définies

récursivement. Nous donnons un exposé des quelques résultats connus en illustrant

la théorie avec plusieurs exemples.

1. Introduction

The study of solutions of polynomial equations over finite fields has a long history

in mathematics, going back to C.F. Gauss. In case these polynomials define a one-

dimensional object (i.e., they define a curve or equivalently an algebraic function

field), we have the famous result of A. Weil (see [16]) bounding the number of such

solutions having all coordinates in the finite field. This bound is given in terms of

the cardinality of the finite field and the genus of the curve, and it is equivalent to

the validity of the Riemann Hypothesis for the associated Congruence Zeta Function.

When the genus is large with respect to the cardinality of the finite field, Ihara

(see [14]) noticed that Weil’s bound cannot be reached. This observation led to the

consideration of towers of function fields over a fixed finite field.

The interest on towers was enhanced after Tsfasman-Vladut-Zink showed (using

towers and a construction of linear codes from function fields due to Goppa) the

existence of sequences of codes with limit parameters (transmission rate and relative

distance) above the so-called Gilbert-Varshamov bound (see [15]).
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In this paper we present several topics in the theory of towers of function fields

over finite fields. We will omit most proofs, since these are already given in other

papers by the authors. We will give references to these papers when necessary.

After starting with basic definitions and first properties of towers of function fields

over finite fields, we study the limit of a tower and give several examples in order to

illustrate the concept of towers. In Section 3 we present two interesting new examples

of asymptotically good towers, one of them over the field of cardinality q2, the other

over the field of cardinality q3. In the last two sections we use methods from graph

theory to investigate the splitting behaviour of places in a recursive tower. We obtain

a functional equation which gives in many cases further insight in completely splitting

places.

2. The limit of a tower

In this section we discuss some properties of towers of function fields over finite

fields, and we also give some examples. Let Fq be the finite field with q elements.

A function field F over Fq is a finitely generated field extension F/Fq of trans-cendence

degree one, with Fq algebraically closed in the field F . We denote by g(F ) the genus

of the function field F . A tower F over Fq is an infinite sequence F = (F1 ⊂ F2 ⊂
F3 ⊂ · · · ) of function field extensions Fn+1/Fn for all n ∈ N, satisfying:

a) Each extension Fn+1/Fn is finite and separable.

b) We have g(Fn) → ∞ as n→ ∞.

Let N(Fi) denote the number of rational places of Fi/Fq. We are interested in the

limit λ(F) of a tower F over Fq, i.e., by definition

λ(F) := lim
i→∞

N(Fi)

g(Fi)
.

It is an easy consequence of Hurwitz’s genus formula that the limit above exists

(see [9]). Towers are specially interesting if they have many rational places with

respect to the genera; we then say that the tower F is good over Fq if its limit λ(F)

satisfies λ(F) > 0, otherwise F is said to be bad. It is a non-trivial problem to find

such good towers over finite fields, since in most cases it happens that either g(Fi)

increases too fast or N(Fi) does not grow fast enough. We therefore divide the study

of the limit λ(F) into two limits:

(1) The genus γ(F) of F over F1

γ(F) := lim
i→∞

g(Fi)

[Fi : F1]
.

(2) The splitting rate ν(F) of F over F1

ν(F) := lim
i→∞

N(Fi)

[Fi : F1]
.
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The two limits above do exist (see [12]) and we clearly have:

0 < γ(F) 6 ∞, 0 6 ν(F) 6 N(F1), and λ(F) =
ν(F)

γ(F)
.

In particular, the tower F is good over Fq if and only if ν(F) > 0 and γ(F) <∞.

Let F be a function field over Fq and let P be a rational place of F over Fq; i.e., the

degree of the place P satisfies degP = 1. We say that the place P splits completely

in the finite extension E/F if there are [E : F ] places of E above the place P . Let

F = (F1 ⊂ F2 ⊂ F3 ⊂ · · · ) be a tower over Fq and let P be a rational place of the

first field F1 in the tower F . We say that the place P splits completely in the tower

if the place P splits completely in the extension Fn+1/F1 for all n ∈ N. We denote

t(F/F1) = t(F) := #{P a rational place of F1 ; P splits completely in F}.

We clearly have ν(F) > t(F), for any tower F . Hence if the tower is completely

splitting (i.e., if we have t(F) > 0) then ν(F) > 0. Let us also denote by F the limit

field of the tower; i.e., let

F :=
⋃

n∈N

Fn.

Complete splitting is a reasonable condition; we have a partial converse of the

statement above (see [11]). If for some value of n ∈ N the field extension F/Fn is

Galois, then the condition ν(F) > 0 implies that the tower is completely splitting

over Fn (i.e., ν(F) > 0 implies that t(F/Fn) > 0).

Next we consider the genus γ(F) of the tower F over the first field F1. It is useful

to observe that the genus γ(F) does not change under constant field extensions, so we

can replace the function fields Fi/Fq by the function fields F i/Fq := (Fi ·Fq)/Fq, where

Fq denotes the algebraic closure of the finite field Fq. We clearly have [Fn+1 : Fn] =

[Fn+1 : Fn], for each n ∈ N. A place P of F 1 = F1 · Fq is ramified in Fn+1 if there

exist fewer than [Fn+1 : F1] places of Fn+1 above the place P . We then define the

ramification locus of F over F 1 by

V (F) := {P place of F 1 ; P ramifies in Fn+1 for some n ∈ N}.

Let E/F be a separable extension of function fields over the algebraic closure Fq.

Let P be a place of the field F and let Q1, Q2, . . . , Qr be all places of E above P .

There are natural numbers e(Qi|P ) called ramification indices of Qi over P , for all

1 6 i 6 r, and the following fundamental equality holds:

r
∑

i=1

e(Qi|P ) = [E : F ].

The place P is called tame in E/F if the characteristic p does not divide e(Qi|P ),

for all 1 6 i 6 r. Otherwise P is called wild. The extension E/F is called tame if all

places P of the field F are tame places. We call a tower F over Fq a tame tower if

the extensions Fn+1/F 1 are tame extensions, for all n ∈ N.
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Here is a simple sufficient criterion for the finiteness of the genus γ(F) of a tower

(see [11]): if the tower F is a tame tower with a finite ramification locus (i.e.,

#V (F) <∞), then it has a finite genus γ(F) <∞.

The statement above is false in general when F is a wild tower ; i.e., when the

tower F is not tame. Before giving some examples F of tame and wild towers, and

before discussing the splitting rate ν(F) and the genus γ(F) in these examples, we

introduce the concept of recursive towers. We say that a tower F is recursively given

by a polynomial f(X,Y ) ∈ Fq[X,Y ], if F1 = Fq(x1) is the rational function field and,

for each n ∈ N, the field Fn+1 is defined by

Fn+1 := Fn(xn+1), with f(xn, xn+1) = 0.

Further we demand that [Fn+1 : Fn] = degY f(X,Y ) for all n ∈ N. The polynomial

f(X,Y ) should have balanced degrees; i.e., degX f(X,Y ) = degY f(X,Y ). Otherwise

the limit λ(F) of the tower is equal to zero (see [10]).

An upper bound for the limit λ(F) of a tower F over the finite field Fq is the

following bound due to Drinfeld-Vladut (see [7]):

λ(F) 6
√
q − 1.

We now give some examples of towers:

Example 2.1(see [12]). — Consider the tower F over F4 given recursively by the poly-

nomial

f(X,Y ) = Y 3 + (X + 1)3 + 1 ∈ F4[X,Y ].

This is a tame tower with #V (F) = 4 and t(F) = 1 (the place at infinity of F1 =

F4(x1) splits completely). Its limit satisfies

λ(F) = 1 =
√

4 − 1;

i.e., it attains the Drinfeld-Vladut bound.

Example 2.2(see [9]). — Consider the tower F over Fq2 , defined recursively by

f(X,Y ) = (Xq−1 + 1)(Y q + Y ) −Xq ∈ Fq2 [X,Y ].

This is a wild tower F satisfying

ν(F) = q2 − q and γ(F) = q.

In particular it attains the Drinfeld-Vladut bound; i.e.,

λ(F) = q − 1.

For wild towers it is in general very hard to decide if the genus γ(F) is finite or

not. This is the case in Example 2.2 where to show that γ(F) = q involves long and

technical computations.
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For simplicity we say for example that the tower over Fq2 in Example 2.2 is given

by the equation

Y q + Y =
Xq

Xq−1 + 1
.

Example 2.3(see [2, 3]). — Consider the tower F over Fq with q = pp (p an odd prime

number) defined by the following equation

Y p − Y =
(X + 1)(Xp−1 − 1)

Xp−1
.

The tower F is wild, and its ramification locus V (F) is a finite set. Also t(F) > p

(the places of F1 = Fq(x1) which are the zeros of the polynomial xp
1 − x1 − 1 are

completely splitting in the tower F). Nevertheless we have λ(F) = 0 for p > 3.

If one considers the tower in Example 2.3 in the case p = 2, one can show that it is

the same tower as in Example 2.2 with q = 2. In fact just consider the substitutions

X 7→ X + 1 and Y 7→ Y + 1.

Example 2.4(see [11]). — Consider the tower F over Fq, with q = p2 and p an odd

prime number, defined recursively by the equation

Y 2 =
X2 + 1

2X
.

It is easy to see that F is a tame tower with γ(F) = 2. The hard part here is to

show that ν(F) = 2(p−1). From this we conclude that F attains the Drinfeld-Vladut

bound over the finite field Fp2 ; i.e., we conclude

λ(F) = p− 1.

The proof that ν(F) = 2(p − 1) involves the investigation of Fq-rationality of the

roots of Deuring’s polynomial

H(t) :=

p−1
2

∑

j=0

(

p−1
2

j

)2

tj ∈ Fp[t].

The roots ofH(t) parametrize supersingular elliptic curves in Legendre’s normal form.

Now we consider some specific classes of polynomials f(X,Y ) ∈ Fq[X,Y ] which

lead to good towers over Fq in many cases. A tower over Fq is a Kummer tower if it

can be defined recursively by an equation as below

Y m = f(X), with f(X) ∈ Fq(X) and (m, q) = 1.

If m divides (q − 1), each step Fn+1/Fn in a Kummer tower is cyclic of degree m.

Example 2.4 above is a Kummer tower. A more specific class of towers consists of

towers of Fermat type which are given by

Y m = a(X + b)m + c, with a, b, c ∈ Fq.
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