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POINTLESS CURVES OF GENUS THREE AND FOUR

by

Everett W. Howe, Kristin E. Lauter & Jaap Top

Abstract. — A curve over a field k is pointless if it has no k-rational points. We show

that there exist pointless genus-3 hyperelliptic curves over a finite field Fq if and only

if q 6 25, that there exist pointless smooth plane quartics over Fq if and only if either

q 6 23 or q = 29 or q = 32, and that there exist pointless genus-4 curves over Fq if

and only if q 6 49.

Résumé (Courbes de genre3 et 4 sans point). — Une courbe sur un corps k est

appelée une courbe sans point si elle n’a aucun point k-rationnel. Nous prouvons

qu’il existe des courbes hyperelliptiques de genre trois sans point sur un corps fini Fq

si et seulement si q 6 25, qu’il existe des quartiques planes sans point sur un corps

fini Fq si et seulement si q 6 23, q = 29 ou q = 32, et qu’il existe des courbes de genre

quatre sans point sur un corps fini Fq si et seulement si q 6 49.

1. Introduction

What is the largest number of rational points there can be on a curve of genus g

over a finite field Fq? Researchers have been studying variants of this question for

several decades. As van der Geer and van der Vlugt write in the introduction to their

biannually-updated survey of results related to certain aspects of this subject, the

attention paid to this question is

motivated partly by possible applications in coding theory and cryptogra-

phy, but just as well by the fact that the question represents an attractive

mathematical challenge. [4]

The complementary question — What is the smallest number of rational points there

can be on a curve of genus g over a finite field Fq? — seems to have sparked little
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interest among researchers, perhaps because of the apparent lack of possible applica-

tions in coding theory and cryptography for curves with few points. But despite the

paucity of applications, there are still mathematical challenges associated with such

curves. In this paper, we address one of them:

Problem. — Given an integer g > 0, determine the finite fields Fq over which there

exists a curve of genus g having no rational points.

We will call a curve over a field k pointless if it has no k-rational points. Thus

the problem we propose is to determine, for a given genus g, the finite fields Fq over

which there is a pointless curve of genus g.

The solutions to this problem for g 6 2 are known. There are no pointless curves

of genus 0 over any finite field; this follows from Wedderburn’s theorem, as is shown

by [18, § III.1.4, exer. 3]. The Weil bound for curves of genus 1 over a finite field,

proven by Hasse [5], shows that there are no pointless curves of genus 1 over any

finite field. If there is a pointless curve of genus 2 over a finite field Fq then the Weil

bound shows that q 6 13, and in 1972 Stark [19] showed that in fact q < 13. For

each q < 13 there do exist pointless genus-2 curves over Fq; a complete list of these

curves is given in [14, Table 4].

In this paper we provide solutions for the cases g = 3 and g = 4.

Theorem 1.1. — There exists a pointless genus-3 curve over Fq if and only if either

q 6 25 or q = 29 or q = 32.

Theorem 1.2. — There exists a pointless genus-4 curve over Fq if and only if q 6 49.

In fact, for genus-3 curves we prove a statement slightly stronger than Theorem 1.1:

Theorem 1.3. — There exists a pointless genus-3 hyperelliptic curve over Fq if and

only if q 6 25; there exists a pointless smooth plane quartic curve over Fq if and only

if either q 6 23 or q = 29 or q = 32.

The idea of the proofs of these theorems is simple. For any given genus g, and

in particular for g = 3 and g = 4, the Weil bound can be used to provide an upper

bound for the set of prime powers q such that there exist pointless curves of genus

g over Fq. For each q less than or equal to this bound, we either provide a pointless

curve of genus g or use the techniques of [8] to prove that none exists.

We wrote above that the question of how few points there can be on a genus-g curve

over Fq seems to have attracted little attention, and this is certainly the impression

one gets from searching the literature for references to such curves. On the other

hand, the question has undoubtedly occurred to researchers before. Indeed, the third

author was asked this very question for the special case g = 3 by both N.D. Elkies

and J.-P. Serre after the appearance of his joint work [1] with Auer. Also, while it

is true that there seem to be no applications for pointless curves, it can be useful
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to know whether or not they exist. For example, Leep and Yeomans were concerned

with the existence of pointless plane quartics in their work [13] on explicit versions of

special cases of the Ax-Kochen theorem. Finally, we note that Clark and Elkies have

recently proven that for every fixed prime p there is a constant Ap such that for every

integer n > 0 there is a curve over Fp of genus at most Apnpn that has no places of

degree n or less.

In Section 2 we give the heuristic that guided us in our search for pointless curves.

In Section 3 we give the arguments that show that there are no pointless curves of

genus 3 over F27 or F31, no pointless smooth plane quartics over F25, no pointless

genus-3 hyperelliptic curves over F29 or F32, and no pointless curves of genus 4 over

F53 or F59. Finally, in Sections 4 and 5 we give examples of pointless curves of genus

3 and 4 over every finite field for which such curves exist.

Conventions. — By a curve over a field k we mean a smooth, projective, geometrically

irreducible 1-dimensional variety over k. When we define a curve by a set of equations,

we mean the normalization of the projective closure of the variety defined by the

equations.

Acknowledgments. — The first author spoke about the work [8] at AGCT-9, and he

thanks the organizers Yves Aubry, Gilles Lachaud, and Michael Tsfasman for inviting

him to Luminy and for organizing such a pleasant and interesting conference. The

first two authors thank the editors for soliciting this paper, which made them think

about other applications of the techniques developed in [8].

In the course of doing the work described in this paper we used the computer

algebra system Magma [2]. Several of our Magma programs are available on the web:

start at

http://www.alumni.caltech.edu/~however/biblio.html

and follow the links related to this paper. One of our proofs depends on an explicit

description of the isomorphism classes of unimodular quaternary Hermitian forms over

the quadratic ring of discriminant −11. The web site mentioned above also contains

a copy of a text file that gives a list of the six isomorphism classes of such forms; we

obtained this file from the web site

http://www.math.uni-sb.de/~ag-schulze/Hermitian-lattices/

maintained by Rainer Schulze-Pillot-Ziemen.

2. Heuristics for constructing pointless curves

To determine the correct statements of Theorems 1.1 and 1.2 we began by searching

for pointless curves of genus 3 and 4 over various small finite fields. In this section

we explain the heuristic we used to find families of curves in which pointless curves
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might be abundant. We begin with a lemma from the theory of function fields over

finite fields.

Lemma 2.1. — Let L/K be a degree-d extension of function fields over a finite field k,

let M be the Galois closure of L/K, let G = Gal(M/K), and let H = Gal(M/L).

Let S be the set of places p of K that are unramified in L/K and for which there is

at least one place q of L, lying over p, with the same residue field as p. Then the

set S has a Dirichlet density in the set of all places of K unramified in L/K, and this

density is

δ :=
# ∪τ∈G Hτ

#G
.

We have δ > 1/d, with equality precisely when L is a Galois extension of K. Further-

more, we have δ 6 1 − (d − 1)/#G.

Proof. — An easy exercise in the class field theory of function fields (cf. [6, proof of

Lem. 2]) shows that the set S is precisely the set of places p whose Artin symbol

(p, L/K) lies in the union of the conjugates of H in G. The density statement then

follows from the Chebotarev density theorem.

Since H is an index-d subgroup of G, we have

# ∪τ∈G Hτ

#G
>

#H

#G
=

1

d
.

If L/K is Galois then H is trivial and the first relation in the displayed equation

above is an equality. If L/K is not Galois then H is a non-normal subgroup of G, so

the first relation above is an inequality.

To prove the upper bound on δ, we note that two conjugates Hσ and Hτ of H are

identical when σ and τ lie in the same coset of H in G, so when we form the union

of the conjugates of H we need only let τ range over a set of coset representatives

of the d cosets of H in G. Furthermore, the identity element lies in every conjugate

of H , so the union of the conjugates of H contains at most d ·#H − (d− 1) elements.

The upper bound follows.

Note that the density mentioned in Lemma 2.1 is a Dirichlet density. If the constant

field of K is algebraically closed in the Galois closure of L/K, then the set S also has

a natural density (see [10]). In particular, the set S has a natural density when L/K

is a Galois extension and L and K have the same constant field.

Lemma 2.1 leads us to our main heuristic:

Heuristic. — Let C → D be a degree-d cover of curves over Fq, let L/K be the cor-

responding extension of function fields, and let δ be the density from Lemma 2.1. If

the constant field of the Galois closure of L/K is equal to Fq, then C will be pointless

with probability (1− δ)#D(Fq). In particular, if C → D is a Galois cover, then C will

be pointless with probability (1 − 1/d)#D(Fq).
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Justification. — Lemma 2.1 makes it reasonable to expect that with probability 1−δ,

a given rational point of D will have no rational points of C lying over it. Our heuristic

follows if we assume that all of the points of D behave independently.

Consider what this heuristic tells us about hyperelliptic curves. Since a hyperel-

liptic curve is a double cover of a genus-0 curve, we expect that a hyperelliptic curve

over Fq will be pointless with probability (1/2)q+1. However, if the hyperelliptic curve

has more automorphisms than just the hyperelliptic involution, it will be more likely

to be pointless. For instance, suppose C is a hyperelliptic curve whose automorphism

group has order 4. This automorphism group will give us a Galois cover C → P
1

of degree 4. Then our heuristic suggests that C will be pointless with probability

(3/4)q+1.

This heuristic suggested two things to us. First, to find pointless curves it is helpful

to look for curves with larger-than-usual automorphism groups. We decided to focus

on curves whose automorphism groups contain the Klein 4-group, because it is easy

to write down curves with this automorphism group and yet the group is large enough

to give us a good chance of finding pointless curves. Second, the heuristic suggested

that we look at curves C that are double covers of curves D that are double covers

of P
1. The Galois group of the resulting degree-4 cover C → P

1 will typically be the

dihedral group of order 8, and the heuristic predicts that C will be pointless with

probability (5/8)q+1. For a fixed D, if we consider the family of double covers C → D

with C of genus 3 or 4, our heuristic predicts that C will be pointless with probability

(1/2)#D(Fq). If #D(Fq) is small enough, this probability can be reasonably high.

The curves that we found by following our heuristic are listed in Sections 4 and 5.

3. Proofs of the theorems

In this section we prove the theorems stated in the introduction. Clearly Theo-

rem 1.1 follows from Theorem 1.3, so we will only prove Theorems 1.2 and 1.3.

Proof of Theorem 1.3. — The Weil bound says that a curve of genus 3 over Fq has

at least q + 1 − 6
√

q points, and it follows immediately that if there is a pointless

genus-3 curve over Fq then q < 33. In Section 4 we give examples of pointless genus-3

hyperelliptic curves over Fq for q 6 25 and examples of pointless smooth plane quartics

for q 6 23, for q = 29, and for q = 31. To complete the proof, we need only prove the

following statements:

(1) There are no pointless genus-3 curves over F31.

(2) There are no pointless genus-3 curves over F27.

(3) There are no pointless smooth plane quartics over F25.

(4) There are no pointless genus-3 hyperelliptic curves over F32.

(5) There are no pointless genus-3 hyperelliptic curves over F29.
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