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REAL QUADRATIC EXTENSIONS OF THE RATIONAL

FUNCTION FIELD IN CHARACTERISTIC TWO

by

Dominique Le Brigand

Abstract. — We consider real quadratic extensions of the rational field over a finite

field of characteristic two. After recalling the equation of such extensions, we present

a geometric approach of the continued fraction expansion algorithm to compute the

regulator. Finally, we study the ideal class number one problem and give numerous

examples for which the ideal class number equals one.

Résumé (Extensions quadratiques réelles du corps rationnel en caractéristique 2)
Nous étudions les extensions quadratiques réelles du corps rationnel sur un corps

fini de caractéristique 2. On rappelle la forme générale de telles extensions puis on

donne une approche géométrique de l’algorithme des fractions continues qui permet

de calculer le régulateur. Enfin on s’intéresse aux extensions quadratiques réelles dont

le nombre de classes d’idéaux de l’anneau des entiers est égal à un et on donne un

grand nombre d’exemples pour lesquels cette situation est réalisée.

1. Introduction

We consider a separable quadratic extension K of the rational field k = Fq, such

that the full constant field of the function field K/Fq is Fq. We denote by Ox the

integral closure of Fq[x] in K and by hx the ideal class-number of Ox. It is easy

to prove that there is only a finite number of imaginary quadratic extensions such

that hx = constant. For real quadratic extensions and when the constant field Fq is

fixed, it is not known whether this result is false or not. The Gauss conjecture for

function fields pretends that there is an infinite number of real quadratic extensions

such that hx = 1. The main motivation for this paper was to examine the validity of

the Gauss conjecture in the characteristic 2 case. Unfortunately, we have no answer.

This paper is organized as follows. In Section 2, we recall basic results about quadratic

extensions. In Section 3, we focus on real quadratic extensions in characteristic 2 and
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give some geometric approach of the continued fraction expansion (CFE) algorithm.

In Section 4, we study the ideal class number one problem in characteristic 2 and give

examples. In particular, we give all the real quadratic extensions of a particular form

such that hx = 1.

2. Quadratic extensions

Let q = pe, and let x be transcendental over Fq, k = Fq(x), finally let K/k be

a (separable) quadratic extension. We always assume that Fq is the full constant

field of the hyperelliptic function field K/Fq and that the genus of K is g > 1. The

places of the rational function field k = Fq(x) are ∞, the pole of x, and the other

places, called finite places of k/Fq, are in one to one correspondence with the monic

irreducible polynomials of Fq[x]. We denote by (P ) the place corresponding to the

monic irreducible polynomial P ∈ Fq[x]. The degree of the place (P ) is equal to the

degree, Deg P , of the polynomial P . If ℘ is a place of K/Fq which is above a finite

place (P ) of k (we denote this by ℘|(P )), we say that ℘ is a finite place of K. We say

that a finite place ℘ of K, ℘|(P ), is inert (resp. split, resp. ramified) if (P ) is inert

(resp. split, resp. ramified) in the extension K/k. We denote by suppD the support

of a divisor D of K/Fq, by deg D its degree. The principal divisor of a u ∈ K∗ is

denoted by div(u) and div(u) = div0(u) − div∞(u), with div0(u) (resp. div∞(u)) the

zero divisor (resp. the pole divisor) of u. We denote by h the divisor class number

of K/Fq, i.e. the order of the jacobian over Fq, Jac(K/Fq), considered as the group

of classes of zero degree divisors modulo principal ones. The class in Jac(K/Fq) of a

zero-degree divisor R is denoted by [R]. Let Ox be the integral closure of Fq[x] in K.

Then Ox is the ring of Sx-integers, Sx being the set of places of K above the infinite

place ∞ of the rational field k. Ox is a Dedekind domain and a k[x]-module of rank 2.

The group of fractionary ideals modulo principal ones is finite and its order hx is the

ideal class-number of Ox. The ring Ox is principal if and only if hx = 1. In this

paper, we will say that hx is the ideal class-number of Ox or the ideal class-number

of the quadratic extension K/k. We recall that

– if cardSx = 1, K/k is an imaginary quadratic extension: if Sx = {P∞}, with

deg P∞ = 1, K/k is ramified and if Sx = {℘∞}, with deg ℘∞ = 2, K/k is inert ;

– if cardSx = 2, K/k is a real quadratic extension and we set Sx = {∞1, ∞2}.

This situation was studied by Artin [1] in his thesis, when p = charFq > 2. The

two class numbers h and hx are linked by Schmidt’s formula (cf. [29]) hxrx = hδx,

where rx is the regulator of the extension K/k and δx = gcd{deg ℘, ℘|∞}. If the

extension K/k is an imaginary quadratic extension, rx = 1 and hx = h (resp. hx = 2h)

if ∞ ramifies (resp. is inert) in K. If the extension K/k is real quadratic, rx is the order

of the subgroup of the jacobian of K/Fq generated by the class C∞ = [∞2 − ∞1].

Moreover, we have hx = 1 if and only if Jac(K/Fq) is a cyclic group generated
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by C∞. Finally, notice that the study of the jacobian of a hyperelliptic function

field is of theoretical interest in cryptography in relation with the discrete logarithm

problem. Many papers deal with that subject (see for instance [25] and [33] for odd

characteristic and [26] for p = 2).

2.1. Affine model of a quadratic extension. — In characteristic p = 2, the

equation defining a real extension K/k is less well known than in the odd characteristic

case. For sake of completeness we recall both situations.

Theorem 1. — Let q = pe and let K/Fq be a hyperelliptic function field of genus g > 1,

such that the full constant field of K/Fq is Fq. Let x ∈ K be transcendental over Fq,

k = Fq(x), such that K/k is separable and quadratic. We denote by λx the number of

finite places of k which ramify in K.

(1) Case p > 2. Then K = k(y), with F (x, y) = y2−f(x) = 0, where f ∈ Fq[x] and

f = aP1 · · ·Pr ∈ Fq[x], the Pi’s being pairwise distinct monic irreducible polynomials

and a ∈ F∗q. Moreover the finite places of k which ramify in K are the (Pi)’s, so

λx = r. Set m = Deg f .

(a) If the quadratic extension K/k is imaginary and ∞ ramifies in K, y may

be chosen such that a = 1, m = 2g + 1.

(b) If the quadratic extension K/k is imaginary and ∞ is inert in K, y may

be chosen such that a is a non-square, m = 2g + 2.

(c) If the quadratic extension K/k is real, y may be chosen such that a = 1,

m = 2g + 2.

(2) Case p = 2. Then K = k(y), with F (x, y) = y2 + B(x)y + C(x) = 0, where

B, C ∈ (Fq[x])∗ are such that B is monic and all irreducible factors of B (if any) are

simple factors of C, i.e.

B =
r∏

i=1

Bni

i and C = aN
r∏

i=1

Bi,

the Bi’s are pairwise distinct monic irreducible polynomials, N ∈ Fq[x]∗ is monic and

prime to B, a ∈ F∗q. Moreover the finite places of k which ramify in K are the (Bi)’s,

so λx = r. Set m = Deg C.

(a) If the quadratic extension K/k is imaginary and ∞ ramifies in K, y may

be chosen such that m = 2g + 1, Deg B 6 g, a = 1.

(b) If the quadratic extension K/k is imaginary and ∞ is inert in K, y may

be chosen such that m = 2g + 2, Deg B = g + 1, traceFq/F2
(a) = 1.

(c) If the quadratic extension K/k is real, y may be chosen such that Deg B =

g + 1, and m < 2g + 2.

Reciprocally, any separable quadratic extension K of the rational function field k =

Fq(x) is of the preceding form according to the behaviour of the infinite place of k in

the extension K/k.
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Remark 2. — We give some comments about this theorem for the characteristic 2

case (compare with [8]). First of all, everything goes back to Hasse (see also [35] for

instance), since setting v = y/B, one obtains an equation in Hasse normal form (see

[14]):

(1) G(v, s) = v2 + v +
aN∏r

i=1 B2ni−1
i

= 0 .

So this is well known. Observe that K/k is an Artin-Schreier extension. The condition

B monic is not a restriction, since otherwise change y in y′ = y/b, if b 6= 1 is the

leading coefficient of B. If the quadratic extension K/k is real, it is unnecessary to

consider the case Deg B = g + 1, m = 2g + 2 and the leading coefficient a of C is

such that a = c + c2, with c ∈ F∗q (i.e. traceFq/F2
(a) = 0), since otherwise change y

in y′ = y + cxg+1 and then Deg B = g + 1, and m < 2g + 2. Finally, the condition:

“all irreducible factors of B are simple factors of C” is quoted in [4] (for instance) and

used in [20] to obtain the characterization of imaginary quadratic extensions.

Definition 3. — If K/k is a quadratic extension, we call normal affine model of K/k

a plane affine curve C with equation F (x, y) = 0 satisfying the conditions of the

preceding Theorem and say that F is a normal equation of K/k.

2.2. Hyperelliptic involution. — Consider a quadratic extension K/k and let

C = {F (x, y) = 0} be an affine normal model of K/k. The hyperelliptic involution σ

is the k-automorphism of K such that

σ(y) =

{
−y if p > 2

y + B(x) if p = 2.

For u ∈ K, we set ũ = σ(u). The norm of u is defined by

N(u) = uũ.

The hyperelliptic involution acts on the finite places ℘ of K/Fq and ℘̃ = ℘σ is the

conjugated place of ℘. Considering σ as an Fq(x)-automorphism of K = FqK, it

acts on the affine points of C: if P = (a, b) ∈ Fq
2

is such that F (a, b) = 0, then

P σ = (a,−b) (resp. P σ = (a, b + B(a))) if p > 2 (resp. p = 2) is an affine point

of C. We set P̃ = P σ. Since an affine normal model C is a smooth affine curve in

any characteristic, we identify the finite (degree one) places of K = KFq with the

(smooth) affine points P = (a, b) of a normal affine model C. Given any finite place

(a, b) of K, there is a unique finite place ℘ of K, such that its conorm in the constant

field extension K/Fq of K/Fq is

ConormK/K(℘) =
∑

τ∈Gal(Fq/Fq)

(a, b)τ .
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2.3. Representation of elements in the jacobian of a hyperelliptic function

field

2.3.1. Representation with reduced divisors

Definition 4. — Let K/k be a quadratic extension. An effective divisor A of the

hyperelliptic function field K/Fq is called quasi-reduced if its support does not contain

a pole of x, nor conorms (with respect to K/k) of places of k/Fq. A quasi-reduced

divisor A of K/Fq is called reduced if deg A 6 g. We consider that A = 0 is reduced.

We denote by D+
red the set of reduced divisors.

Note that if A is quasi-reduced, then its support suppA does not contain any inert

finite place ℘ of K. Moreover, if a ramified finite place is in the support of A, then

its valuation equals one and if a split finite place ℘ is in the support on A, then ℘̃ is

not in the support of A. In [27], the following representation of the elements of the

jacobian of K/k is given (in the ramified case it goes back to [1] or [6] for p 6= 2 and

[16] for p = 2). Observe that the authors of [27] assume that p 6= 2. But the results

are also true for p = 2 considering an appropriate affine model.

Proposition 5. — Let K/k be a quadratic extension and let g be the genus of the hy-

perelliptic function field K/Fq.

(1) If K/k is ramified, then

Jac(K/Fq) = {[A − (deg A)P∞], A ∈ D+
red}.

(2) If K/k is real, then

Jac(K/Fq) = {[A − (deg A)∞2 + n(∞1 −∞2)], A ∈ D+
red and 0 6 n 6 g − deg A}.

Proof. — see [27].

Corollary 6. — Let K/k be a real quadratic extension. The regulator of K/k is such

that rx > g + 1, where g is the genus of the hyperelliptic function field K/Fq.

Proof. — This a trivial consequence of the previous proposition, since

rx = inf{n ∈ N∗, n(∞1 −∞2) is a principal divisor}

and n(∞1 −∞2) is not principal for all 0 6 n 6 g.

2.3.2. Representation with reduced ideals. — Let K/k be a ramified or real quadratic

extension given by a normal equation F (x, y) = 0. Then an integral basis of Ox is

(1, y) and we write this Ox = [1, y]. We recall the following definitions.

Definition 7. — An ideal A of Ox is called an integral ideal. Two integral ideals A

and B are said to be equivalent if there exist non-zero α, β ∈ Ox such that (α)A =

(β)B. An integral ideal A is principal if there exists α ∈ K such that A = (α)Ox. The

conjugate of an integral ideal A is the integral ideal Ã such that Ã = {α̃, α ∈ A}. An
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