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EXPLICIT UPPER BOUNDS FOR THE RESIDUES AT s=1
OF THE DEDEKIND ZETA FUNCTIONS OF SOME
TOTALLY REAL NUMBER FIELDS

by

Stéphane R. Louboutin

Abstract — We give an explicit upper bound for the residue at s = 1 of the Dedekind
zeta function of a totally real number field K for which (x(s)/{(s) is entire. Notice
that this is conjecturally always the case, and that it holds true if K/Q is normal or
if K is cubic.

Résumé (Bornes supérieures explicites pour les résidus en = 1 des fonctions zéta de
Dedekind de corps de nombres totalement réels)

Nous donnons une borne supérieure explicite pour le résidu en s = 1 de la fonction
zéta de Dedekind d’un corps de nombres K totalement réel pour lequel (x(s)/¢(s)
est entiére. On remarque que c’est conjecturalement toujours le cas, et que c’est vrai
si K/Q est normale ou si K est cubique.

1. Introduction

Let dx and (x(s) denote the absolute value of the discriminant and the Dedekind
zeta function of a number field K of degree m > 1. It is important to have explicit
upper bounds for the residue at s =1 of (i (s). As for the best general such bounds,
we have (see [Lou01, Theorem 1]):

elogdg ml
)

Ress—1(Cx (s)) < (2(”17—1

However, for some totally real number fields an improvement on this bound is known
(see [BL] and [Oka)] for applications):

Theorem 1(See[Lou01, Theorem 2]). — Let K range over a family of totally real num-
ber fields of a given degree m > 3 for which (k(s)/C(s) is entire. There exists Cp,
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(computable) such that dx > C,, implies

log™ tdg < 1 ( elogdx )m_l
2(m —1)

Ress—1(Cx (s)) < 2m=1(m — 1)! = 2r(m — 1)

Moreover, for any non-normal totally real cubic field K we have the slightly better
bound

(logdg — k)?

ool =

Res,—1(Ck (s)) <
where k := 2log(4m) —2 — 2y =1.90761... .

Remark 2 — If K/Q is normal or if K is cubic, then (x(s)/((s) is entire.

We will simplify our previous proof of Theorem 1 (by improving those of [Lou98,
Theorem 5] and [Lou01, Theorem 2]) and we will give explicit constants C,, for which
Theorem 1 holds true:

Theorem 3 — There exists C > 0 (effective) such that for any totally real number
field K of degree m > 3 and root discriminant py := d}(/m > C™ we have

log™ dg
Ress=1(Cr (5)) < 2m—T(m — 1)’

provided that Cx (s)/((s) is entire. Moreover, C = 3309 will do for m large enough.

This result is not the one we would have wished to prove. It would indeed have
been much more satisfactory to prove that there exists C' > 0 (effective) such that
this bound is valid for such totally real number fields K of root discriminants px > C
large enough. It would have been even more satisfactory to prove that this constant
C is small enough to obtain that our bound is valid for all totally real number fields
K for which (x(s)/¢(s) is entire (e.g., see [Was, Page 224] for explicit lower bounds
on root discriminants of totally real number fields K'). Let us finally point out that, in
the case that K/Q is abelian, we have an even better bound (see [Lou01, Corollary 8]
and use [Ram, Corollary 1]):

logdx \™ "

Rese—1(Cx (s)) < (2(m 1

2. Proof of Theorem 1

Proposition 4 — Let K be a totally real number field of degree m > 1, set d = v/dy,
and assume that Cx(s)/((s) is entire. Then, Ress—1(Ck(s)) < pm—1(d) where
1 1
)(dsfl +d75)}.

(1) pmi(d) = Resor {5+ (x/20(s/2)¢()) "7 (£ + ==
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Proof. — To begin with, we set some notation: if K is a totally real number field of
degree m > 1, we set Ax = /di /™ and Fk(s) = A3 T™(s/2)Ck(s). Hence, Fk(s)
is meromorphic, with only two poles, at s = 1 and s = 0, both simple, and it satisfies
the functional equation Fx (1 — s) = Fk(s).

We then set Fx/q(s) = Fk(s)/Fq(s), which under our assumption is entire, and
satisfies the functional equation F,q(1 —s) = Fk/q(s), and Ax/q := Ax/Aq =
V/dg /mm—1. Notice that Fg/q(1) = vdx Ress—1(Cx (s)). Let

1 c+i00

(2) Skiq(x) = o Frq(s)r™%ds (c>1and z > 0)

denote the Mellin transform of Fi,q(s). Since Fk,q(s) is entire, it follows that
Sk/q(x) satisfies the functional equation

S ! S =
(3) K/Q(x) =7 K/Q(E)
(shift the vertical line of integration R(s) = ¢ > 1 in (2) leftwards to the vertical line of
integration R(s) = 1—c < 0, then use the functional equation F/q(1—s) = Fx/q(s)
to come back to the vertical line of integration (s) = ¢ > 1), and

e Jdr e s _odx
(1) Fiiae) = | Sira@e T = [ Swjala)(et + 0%
0 € 1 €
is the inverse Mellin transform of Sk /q ().
Now, set
(5) Frne1(s) = F§™4(s) = (/T (5/2)¢(s))" ",
Am—l — A871 _ ﬂ.—(m—l)/Q
and let
1 ct+100
(6) Sm—1(z) := 5 Fr—1(s)z7°ds (¢>1and z > 0)
T Jc—ico

denote the Mellin transform of F,,,_1(s). Here, F,,_1(s) has two poles, at s = 1 and
s = 0, the functional equation F,—1(1 — s) = Fy,—1(s) yields
ReSS:()(Fm,1 (s)xfs) = — ResS:1 (mel(S)l'sil)
and
—S s—1 1 1
(7) Sm-1(@) = Ressmt{Fn_1() (2™ = 2" ™)} + Sy (E)
(shift the vertical line of integration $(s) = ¢ > 1 in (6) leftwards to the vertical line
of integration R(s) = 1 — ¢ < 0, notice that you pick up residues at s = 1 and s = 0,
then use the functional equation F,,_1(1 —s) = Fy,,—1(s) to come back to the vertical
line of integration R(s) = ¢ > 1). Finally, we set
1 c+ioo

Hpy_1(z) = 30 ' Y(s/2)z %ds (c>1and z > 0).

c—100
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Notice that 0 < H,,_;(x) for > 0 (see [Lou00, Proof of Theorem 2](")). Now, write

Cxe(s)/¢(s) = Z ag/q(n)n*

nz=1

and

M) = Z Am—1(n)n=%.

n>1

Then, |ax/q(n)| < am-1(n) for all n. > 1 (see [Lou01, Lemma 26]). Since

n>1
and
0< Sp—1(z) = Z am—1(M)Hpm—1(nz/Am—_1),
n>1
we obtain
(8) Sk/Q(@) < Smor(w/d) with d:= Ag/q/Am—1 = Vdx.

We are now ready to proceed with the proof of Proposition 4. We have
o 1
dRes1(Cx(9) = Fia(D) = [ Sia) (14 )de (o (9)
1
< /OO Sor(w/d) (14 2)dr  (by (8))
1 T
& 1
_ /l/d Sm_l(:c)(d + E)dm
o 1 | 1\ /d
e 1
<(d+1 — 1+ —)d
@+1) [ Sues(a)(1+7)do

d
d
_ -5 _ ,.5—1 -
/1 Ress_1{Fin_1(s)(z ™ — 2 )}(m n l)daz
(by (7), and for S,,—1(x) = 0 for z > 0)

(DNotice the misprints in [Lou00, page 273, line 1] and [Lou01, Theorem 20] where one should
read

(Ml *MQ)(:B) = ‘/Ooo Ml(m/t)MQ(t)%'
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— (d+ 1)/100 Sm_l(x)(l + %)dx

_ Resszl{Fm,l(s) /ld(;cs _ 1‘5*1)(3 4 1)dz}

(compute these residues as contour integrals along a circle
of center 1 and of small radius, and use Fubini’s theorem)

“ i) ([T s (1 e v {mno (e )

#Res,co{ (o) +d7) (5 + ) |

The desired result now follows from Lemma 5 below. O

Lemmab — Set

1 1
o9 B 125,
Then,

Iy = /100 sm,l(x)(1 + i)daz = Resy_1 (Gm_1(s)).

Proof. — By (6) and Fubini’s theorem, we have

= o [ B[ e han)as = 3 [ G o
m-1= — m—1(s x x x)ds = — m—1(8)ds
! 211 c—i00 ! 1 2mi c—100 !
The functional equation Gy,—1(1 — s) = —Gp—1(s) yields
1 c+ioco
L1 = — _
s e Gm—1(8)ds
1 1—c+ioco
= Ress=1(Gm—-1(8)) + Ress—o(Gm—1(s)) + 30 / Gm-1(s)ds
1—c—ico

= 2R685:1(Gm71(8)) - Imflv

from which the desired result follows. O
Let us now complete the proof of Theorem 1. Since
1
) 720 (5/2)(s) = —— —a+O(s — 1),
s —
with a = (log(4m) —~)/2 =0.97690. . ., using (1) we obtain
1 - Cm—1 -2 -3
m-1(d) = ———log" 'd — —"—=1log™ *d + O(log™ *d
pm—1(d) (m =1y 8 (m—2)1 8 + O(log )

with ¢p—1 := (m —1)a— 1 > 0 for m > 3, and the desired first result follows. In the
special case m = 3, in writing

R (5/2)G(s) = — —a+bls — 1) +O((s — 1)),
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