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HOMOMORPHISMS OF ABELIAN VARIETIES

by

Yuri G. Zarhin

Abstract. — We study Galois properties of points of prime order on an abelian va-

riety that imply the simplicity of its endomorphism algebra. Applications of these

properties to hyperelliptic jacobians are discussed.

Résumé (Homomorphismes des variétés abéliennes). — Nous étudions les propriétés

galoisiennes des points d’ordre fini des variétés abéliennes qui impliquent la sim-

plicité de leur algèbre d’endomorphismes. Nous discutons ceux-ci par rapport aux

jacobiennes hyperelliptiques.

It is well-known that an abelian variety is (absolutely) simple or is isogenous to a

self-product of an (absolutely) simple abelian variety if and only if the center of its

endomorphism algebra is a field. In this paper we prove that the center is a field if

the field of definition of points of prime order ` is “big enough”.

The paper is organized as follows. In §1 we discuss Galois properties of points of

order ` on an abelian variety X that imply that its endomorphism algebra End0(X)

is a central simple algebra over the field of rational numbers. In §2 we prove that

similar Galois properties for two abelian varieties X and Y combined with the linear

disjointness of the corresponding fields of definitions of points of order ` imply that

X and Y are non-isogenous (and even Hom(X,Y ) = 0). In §3 we give applications to

endomorphism algebras of hyperelliptic jacobians. In §4 we prove that if X admits

multiplications by a number field E and the dimension of the centralizer of E in

End0(X) is “as large as possible” then X is an abelian variety of CM-type isogenous

to a self-product of an absolutely simple abelian variety.

Throughout the paper we will freely use the following observation [21, p. 174]: if

an abelian variety X is isogenous to a self-product Zd of an abelian variety Z then

a choice of an isogeny between X and Zd defines an isomorphism between End0(X)

and the algebra Md(End0(Z)) of d × d matrices over End0(Z). Since the center of
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End0(Z) coincides with the center of Md(End0(Z)), we get an isomorphism between

the center of End0(X) and the center of End0(Z) (that does not depend on the choice

of an isogeny). Also dim(X) = d · dim(Z); in particular, both d and dim(Z) divide

dim(X).

1. Endomorphism algebras of abelian varieties

Throughout this paper K is a field. We write Ka for its algebraic closure and

Gal(K) for the absolute Galois group Gal(Ka/K). We write ` for a prime different

from char(K). If X is an abelian variety of positive dimension over Ka then we write

End(X) for the ring of all its Ka-endomorphisms and End0(X) for the corresponding

Q-algebra End(X) ⊗ Q. If Y is (may be, another) abelian variety over Ka then we

write Hom(X,Y ) for the group of all Ka-homomorphisms from X to Y . It is well-

known that Hom(X,Y ) = 0 if and only if Hom(Y,X) = 0.

If n is a positive integer that is not divisible by char(K) then we write Xn for the

kernel of multiplication by n in X(Ka). It is well-known [21] that Xn is a free Z/nZ-

module of rank 2 dim(X). In particular, if n = ` is a prime then X` is an F`-vector

space of dimension 2 dim(X).

If X is defined over K then Xn is a Galois submodule in X(Ka). It is known

that all points of Xn are defined over a finite separable extension of K. We write

ρn,X,K : Gal(K) → AutZ/nZ(Xn) for the corresponding homomorphism defining the

structure of the Galois module on Xn,

G̃n,X,K ⊂ AutZ/nZ(Xn)

for its image ρn,X,K(Gal(K)) and K(Xn) for the field of definition of all points of Xn.

Clearly, K(Xn) is a finite Galois extension of K with Galois group Gal(K(Xn)/K) =

G̃n,X,K . If n = ` then we get a natural faithful linear representation

G̃`,X,K ⊂ AutF`
(X`)

of G̃`,X,K in the F`-vector space X`.

Remark 1.1. — If n = `2 then there is the natural surjective homomorphism

τ`,X : G̃`2,X,K −→−→ G̃`,X,K

corresponding to the field inclusion K(X`) ⊂ K(X`2); clearly, its kernel is a finite `-

group. Clearly, every prime dividing #(G̃`2,X,K) either divides #(G̃`,X,K) or is equal

to `. If A is a subgroup in G̃`2,X,K of index N then its image τ`,X(A) in G̃`,X,K is

isomorphic to A/A
⋂

ker(τ`,X). It follows easily that the index of τ`,X(A) in G̃`,X,K

equals N/`j where `j is the index of A
⋂

ker(τ`,X) in ker(τ`,X). In particular, j is a

nonnegative integer.

SÉMINAIRES & CONGRÈS 11
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We write EndK(X) for the ring of all K-endomorphisms of X . We have

Z = Z · 1X ⊂ EndK(X) ⊂ End(X)

where 1X is the identity automorphism of X . Since X is defined over K, one may

associate with every u ∈ End(X) and σ ∈ Gal(K) an endomorphism σu ∈ End(X)

such that σu(x) = σu(σ−1x) for x ∈ X(Ka) and we get the group homomorphism

κX : Gal(K) −→ Aut(End(X)); κX(σ)(u) = σu ∀σ ∈ Gal(K), u ∈ End(X).

It is well-known that EndK(X) coincides with the subring of Gal(K)-invariants in

End(X), i.e., EndK(X) = {u ∈ End(X) | σu = u ∀σ ∈ Gal(K)}. It is also

well-known that End(X) (viewed as a group with respect to addition) is a free com-

mutative group of finite rank and EndK(X) is its pure subgroup, i.e., the quotient

End(X)/EndK(X) is also a free commutative group of finite rank. All endomor-

phisms of X are defined over a finite separable extension of K. More precisely [31], if

n > 3 is a positive integer not divisible by char(K) then all the endomorphisms of X

are defined over K(Xn); in particular,

Gal(K(Xn)) ⊂ ker(κX) ⊂ Gal(K).

This implies that if ΓK := κX(Gal(K)) ⊂ Aut(End(X)) then there exists a surjective

homomorphism κX,n : G̃n,X � ΓK such that the composition

Gal(K) −→−→ Gal(K(Xn)/K) = G̃n,X

κX,n−→−→ ΓK

coincides with κX and

EndK(X) = End(X)ΓK .

Clearly, End(X) leaves invariant the subgroup X` ⊂ X(Ka). It is well-known that

u ∈ End(X) kills X` (i.e. u(X`) = 0) if and only if u ∈ ` · End(X). This gives us a

natural embedding

EndK(X) ⊗ Z/`Z ⊂ End(X) ⊗ Z/`Z ↪−→ EndF`
(X`);

the image of EndK(X)⊗ Z/`Z lies in the centralizer of the Galois group, i.e., we get

an embedding

EndK(X) ⊗ Z/`Z ↪−→ EndGal(K)(X`) = End eG`,X,K
(X`).

The next easy assertion seems to be well-known (compare with Prop. 3 and its proof

on pp. 107–108 in [19]) but quite useful.

Lemma 1.2. — If End eG`,X,K
(X`) = F` then EndK(X) = Z.

Proof. — It follows that the F`-dimension of EndK(X) ⊗ Z/`Z does not exceed 1.

This means that the rank of the free commutative group EndK(X) does not exceed 1

and therefore is 1. Since Z · 1X ⊂ EndK(X), it follows easily that EndK(X) =

Z · 1X = Z.
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Lemma 1.3. — If End eG`,X,K
(X`) is a field then EndK(X) has no zero divisors, i.e.,

EndK(X) ⊗ Q is a division algebra over Q.

Proof. — It follows that EndK(X) ⊗ Z/`Z is also a field and therefore has no zero

divisors. Suppose that u, v are non-zero elements of EndK(X) with uv = 0. Dividing

(if possible) u and v by suitable powers of ` in EndK(X), we may assume that both

u and v do not lie in `EndK(X) and induce non-zero elements in EndK(X) ⊗ Z/`Z

with zero product. Contradiction.

Let us put End0(X) := End(X) ⊗ Q. Then End0(X) is a semisimple finite-

dimensional Q-algebra [21, §21]. Clearly, the natural map Aut(End(X)) →
Aut(End0(X)) is an embedding. This allows us to view κX as a homomorphism

κX : Gal(K) −→ Aut(End(X)) ⊂ Aut(End0(X)),

whose image coincides with ΓK ⊂ Aut(End(X)) ⊂ Aut(End0(X)); the subalgebra

End0(X)ΓK of ΓK-invariants coincides with EndK(X) ⊗ Q.

Remark 1.4

(i) Let us split the semisimple Q-algebra End0(X) into a finite direct product

End0(X) =
∏

s∈I
Ds of simple Q-algebras Ds. (Here I is identified with the set of

minimal two-sided ideals in End0(X).) Let es be the identity element of Ds. One

may view es as an idempotent in End0(X). Clearly,

1X =
∑

s∈I

es ∈ End0(X), eset = 0 ∀ s 6= t.

There exists a positive integer N such that all N · es lie in End(X). We write Xs for

the image Xs := (Nes)(X); it is an abelian subvariety in X of positive dimension.

Clearly, the sum map

πX :
∏

s

Xs −→ X, (xs) 7−→
∑

s

xs

is an isogeny. It is also clear that the intersection Ds

⋂
End(X) leaves Xs ⊂ X

invariant. This gives us a natural identification Ds
∼= End0(Xs). One may easily

check that eachXs is isogenous to a self-product of (absolutely) simple abelian variety.

Clearly, if s 6= t then Hom(Xs, Xt) = 0.

(ii) We write Cs for the center of Ds. Then Cs coincides with the center of

End0(Xs) and is therefore either a totally real number field of degree dividing dim(Xs)

or a CM-field of degree dividing 2 dim(Xs) [21, p. 202]; the center C of End0(X) co-

incides with
∏

s∈I
Cs = ⊕s∈SCs.

(iii) All the sets

{es | s ∈ I} ⊂ ⊕s∈IQ · es ⊂ ⊕s∈ICs = C
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are stable under the Galois action Gal(K)
κX−→ Aut(End0(X)). In particular, there

is a continuous homomorphism from Gal(K) to the group Perm(I) of permutations

of I such that its kernel contains ker(κX) and

eσ(s) = κX(σ)(es) = σes,
σ(Cs) = Cσ(s),

σ(Ds) = Dσ(s) ∀σ ∈ Gal(K), s ∈ I.

It follows that Xσ(s) = Neσ(s)(X) = σ(Nes(X)) = σ(Xs); in particular, abelian

subvarieties Xs and Xσ(s) have the same dimension and u 7→ σu gives rise to an

isomorphism of Q-algebras End0(Xσ(s)) ∼= End0(Xs).

(iv) If J is a non-empty Galois-invariant subset in J then the sum
∑

s∈J Nes

is Galois-invariant and therefore lies in EndK(X). If J ′ is another Galois-invariant

subset of I that does not meet J then
∑

s∈J Nes also lies in EndK(X) and∑
s∈J Nes

∑
s∈J′ Nes = 0. Assume that EndK(X) has no zero divisors. It follows

that I must consist of one Galois orbit; in particular, all Xs have the same dimension

equal to dim(X)/#(I). In addition, if t ∈ I, Gal(K)t is the stabilizer of t in Gal(K)

and Ft is the subfield of Gal(K)t-invariants in the separable closure of K then it

follows easily that Gal(K)t is an open subgroup of index #(I) in Gal(K), the field

extension Ft/K is separable of degree #(I) and
∏

s∈S Xs is isomorphic over Ka

to the Weil restriction ResFt/K(Xt). This implies that X is isogenous over Ka to

ResFt/K(Xt).

Theorem 1.5. — Suppose that ` is a prime, K is a field of characteristic 6= `. Suppose

that X is an abelian variety of positive dimension g defined over K. Assume that

G̃`,X,K contains a subgroup G such EndG(X`) is a field.

Then one of the following conditions holds:

(a) The center of End0(X) is a field. In other words, End0(X) is a simple Q-

algebra.

(b)

(i) The prime ` is odd;

(ii) there exist a positive integer r > 1 dividing g, a field F with

K ⊂ K(X`)
G =: L ⊂ F ⊂ K(X`), [F : L] = r

and a g/r-dimensional abelian variety Y over F such that End0(Y ) is a simple

Q-algebra, the Q-algebra End0(X) is isomorphic to the direct sum of r copies

of End0(Y ) and the Weil restriction ResF/L(Y ) is isogenous over Ka to X.

In particular, X is isogenous over Ka to a product of g/r-dimensional abelian

varieties. In addition, G contains a subgroup of index r;

(c)

(i) The prime ` = 2;

(ii) there exist a positive integer r > 1 dividing g, fields L and F with

K ⊂ K(X4)
G ⊂ L ⊂ F ⊂ K(X4), [F : L] = r
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