Séminaires & Congrès 11, 2005, p. 189–215

HOMOMORPHISMS OF ABELIAN VARIETIES

by

Yuri G. Zarhin

Abstract. — We study Galois properties of points of prime order on an abelian variety that imply the simplicity of its endomorphism algebra. Applications of these properties to hyperelliptic jacobians are discussed.

Résumé (Homomorphismes des variétés abéliennes). — Nous étudions les propriétés galoisiennes des points d'ordre fini des variétés abéliennes qui impliquent la simplicité de leur algèbre d'endomorphismes. Nous discutons ceux-ci par rapport aux jacobiennes hyperelliptiques.

It is well-known that an abelian variety is (absolutely) simple or is isogenous to a self-product of an (absolutely) simple abelian variety if and only if the center of its endomorphism algebra is a field. In this paper we prove that the center is a field if the field of definition of points of prime order ℓ is "big enough".

The paper is organized as follows. In §1 we discuss Galois properties of points of order ℓ on an abelian variety X that imply that its endomorphism algebra $\operatorname{End}^0(X)$ is a central simple algebra over the field of rational numbers. In §2 we prove that similar Galois properties for two abelian varieties X and Y combined with the linear disjointness of the corresponding fields of definitions of points of order ℓ imply that X and Y are non-isogenous (and even $\operatorname{Hom}(X, Y) = 0$). In §3 we give applications to endomorphism algebras of hyperelliptic jacobians. In §4 we prove that if X admits multiplications by a number field E and the dimension of the centralizer of E in $\operatorname{End}^0(X)$ is "as large as possible" then X is an abelian variety of CM-type isogenous to a self-product of an absolutely simple abelian variety.

Throughout the paper we will freely use the following observation [21, p. 174]: if an abelian variety X is isogenous to a self-product Z^d of an abelian variety Z then a choice of an isogeny between X and Z^d defines an isomorphism between $\text{End}^0(X)$ and the algebra $M_d(\text{End}^0(Z))$ of $d \times d$ matrices over $\text{End}^0(Z)$. Since the center of

²⁰⁰⁰ Mathematics Subject Classification. - 14H40, 14K05.

Key words and phrases. — Hyperelliptic jacobians, homomorphisms of abelian varieties.

 $\operatorname{End}^{0}(Z)$ coincides with the center of $\operatorname{M}_{d}(\operatorname{End}^{0}(Z))$, we get an isomorphism between the center of $\operatorname{End}^{0}(X)$ and the center of $\operatorname{End}^{0}(Z)$ (that does not depend on the choice of an isogeny). Also $\dim(X) = d \cdot \dim(Z)$; in particular, both d and $\dim(Z)$ divide $\dim(X)$.

1. Endomorphism algebras of abelian varieties

Throughout this paper K is a field. We write K_a for its algebraic closure and $\operatorname{Gal}(K)$ for the absolute Galois group $\operatorname{Gal}(K_a/K)$. We write ℓ for a prime different from $\operatorname{char}(K)$. If X is an abelian variety of positive dimension over K_a then we write $\operatorname{End}(X)$ for the ring of all its K_a -endomorphisms and $\operatorname{End}^0(X)$ for the corresponding \mathbb{Q} -algebra $\operatorname{End}(X) \otimes \mathbb{Q}$. If Y is (may be, another) abelian variety over K_a then we write $\operatorname{Hom}(X,Y)$ for the group of all K_a -homomorphisms from X to Y. It is well-known that $\operatorname{Hom}(X,Y) = 0$ if and only if $\operatorname{Hom}(Y,X) = 0$.

If n is a positive integer that is not divisible by $\operatorname{char}(K)$ then we write X_n for the kernel of multiplication by n in $X(K_a)$. It is well-known [21] that X_n is a free $\mathbb{Z}/n\mathbb{Z}$ -module of rank $2\dim(X)$. In particular, if $n = \ell$ is a prime then X_{ℓ} is an \mathbb{F}_{ℓ} -vector space of dimension $2\dim(X)$.

If X is defined over K then X_n is a Galois submodule in $X(K_a)$. It is known that all points of X_n are defined over a finite separable extension of K. We write $\overline{\rho}_{n,X,K} : \operatorname{Gal}(K) \to \operatorname{Aut}_{\mathbb{Z}/n\mathbb{Z}}(X_n)$ for the corresponding homomorphism defining the structure of the Galois module on X_n ,

$$G_{n,X,K} \subset \operatorname{Aut}_{\mathbb{Z}/n\mathbb{Z}}(X_n)$$

for its image $\overline{\rho}_{n,X,K}(\text{Gal}(K))$ and $K(X_n)$ for the field of definition of all points of X_n . Clearly, $K(X_n)$ is a finite Galois extension of K with Galois group $\text{Gal}(K(X_n)/K) = \widetilde{G}_{n,X,K}$. If $n = \ell$ then we get a natural faithful linear representation

$$G_{\ell,X,K} \subset \operatorname{Aut}_{\mathbb{F}_{\ell}}(X_{\ell})$$

of $\widetilde{G}_{\ell,X,K}$ in the \mathbb{F}_{ℓ} -vector space X_{ℓ} .

Remark 1.1. — If $n = \ell^2$ then there is the natural surjective homomorphism

$$\tau_{\ell,X}: \widetilde{G}_{\ell^2,X,K} \longrightarrow \widetilde{G}_{\ell,X,K}$$

corresponding to the field inclusion $K(X_{\ell}) \subset K(X_{\ell^2})$; clearly, its kernel is a finite ℓ group. Clearly, every prime dividing $\#(\tilde{G}_{\ell^2,X,K})$ either divides $\#(\tilde{G}_{\ell,X,K})$ or is equal to ℓ . If A is a subgroup in $\tilde{G}_{\ell^2,X,K}$ of index N then its image $\tau_{\ell,X}(A)$ in $\tilde{G}_{\ell,X,K}$ is isomorphic to $A/A \bigcap \ker(\tau_{\ell,X})$. It follows easily that the index of $\tau_{\ell,X}(A)$ in $\tilde{G}_{\ell,X,K}$ equals N/ℓ^j where ℓ^j is the index of $A \bigcap \ker(\tau_{\ell,X})$ in $\ker(\tau_{\ell,X})$. In particular, j is a nonnegative integer.

SÉMINAIRES & CONGRÈS 11

We write $\operatorname{End}_K(X)$ for the ring of all K-endomorphisms of X. We have

 $\mathbb{Z} = \mathbb{Z} \cdot 1_X \subset \operatorname{End}_K(X) \subset \operatorname{End}(X)$

where 1_X is the identity automorphism of X. Since X is defined over K, one may associate with every $u \in \text{End}(X)$ and $\sigma \in \text{Gal}(K)$ an endomorphism ${}^{\sigma}u \in \text{End}(X)$ such that ${}^{\sigma}u(x) = \sigma u(\sigma^{-1}x)$ for $x \in X(K_a)$ and we get the group homomorphism

$$\kappa_X : \operatorname{Gal}(K) \longrightarrow \operatorname{Aut}(\operatorname{End}(X)); \quad \kappa_X(\sigma)(u) = {}^{\sigma}u \quad \forall \sigma \in \operatorname{Gal}(K), u \in \operatorname{End}(X).$$

It is well-known that $\operatorname{End}_K(X)$ coincides with the subring of $\operatorname{Gal}(K)$ -invariants in $\operatorname{End}(X)$, *i.e.*, $\operatorname{End}_K(X) = \{u \in \operatorname{End}(X) \mid {}^{\sigma}u = u \quad \forall \sigma \in \operatorname{Gal}(K)\}$. It is also well-known that $\operatorname{End}(X)$ (viewed as a group with respect to addition) is a free commutative group of finite rank and $\operatorname{End}_K(X)$ is its *pure* subgroup, *i.e.*, the quotient $\operatorname{End}(X)/\operatorname{End}_K(X)$ is also a free commutative group of finite rank. All endomorphisms of X are defined over a finite separable extension of K. More precisely [**31**], if $n \geq 3$ is a positive integer not divisible by $\operatorname{char}(K)$ then all the endomorphisms of X are defined over $K(X_n)$; in particular,

$$\operatorname{Gal}(K(X_n)) \subset \ker(\kappa_X) \subset \operatorname{Gal}(K).$$

This implies that if $\Gamma_K := \kappa_X(\operatorname{Gal}(K)) \subset \operatorname{Aut}(\operatorname{End}(X))$ then there exists a surjective homomorphism $\kappa_{X,n} : \widetilde{G}_{n,X} \twoheadrightarrow \Gamma_K$ such that the composition

$$\operatorname{Gal}(K) \longrightarrow \operatorname{Gal}(K(X_n)/K) = \widetilde{G}_{n,X} \xrightarrow{\kappa_{X,n}} \Gamma_K$$

coincides with κ_X and

$$\operatorname{End}_K(X) = \operatorname{End}(X)^{\Gamma_K}.$$

Clearly, $\operatorname{End}(X)$ leaves invariant the subgroup $X_{\ell} \subset X(K_a)$. It is well-known that $u \in \operatorname{End}(X)$ kills X_{ℓ} (*i.e.* $u(X_{\ell}) = 0$) if and only if $u \in \ell \cdot \operatorname{End}(X)$. This gives us a natural embedding

$$\operatorname{End}_{K}(X) \otimes \mathbb{Z}/\ell\mathbb{Z} \subset \operatorname{End}(X) \otimes \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \operatorname{End}_{\mathbb{F}_{\ell}}(X_{\ell});$$

the image of $\operatorname{End}_K(X) \otimes \mathbb{Z}/\ell\mathbb{Z}$ lies in the centralizer of the Galois group, *i.e.*, we get an embedding

$$\operatorname{End}_{K}(X) \otimes \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \operatorname{End}_{\operatorname{Gal}(K)}(X_{\ell}) = \operatorname{End}_{\widetilde{G}_{\ell,X,K}}(X_{\ell}).$$

The next easy assertion seems to be well-known (compare with Prop. 3 and its proof on pp. 107–108 in [19]) but quite useful.

Lemma 1.2. — If
$$\operatorname{End}_{\widetilde{G}_{\ell,X,K}}(X_{\ell}) = \mathbb{F}_{\ell}$$
 then $\operatorname{End}_{K}(X) = \mathbb{Z}$.

Proof. — It follows that the \mathbb{F}_{ℓ} -dimension of $\operatorname{End}_{K}(X) \otimes \mathbb{Z}/\ell\mathbb{Z}$ does not exceed 1. This means that the rank of the free commutative group $\operatorname{End}_{K}(X)$ does not exceed 1 and therefore is 1. Since $\mathbb{Z} \cdot 1_{X} \subset \operatorname{End}_{K}(X)$, it follows easily that $\operatorname{End}_{K}(X) = \mathbb{Z} \cdot 1_{X} = \mathbb{Z}$.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

YU.G. ZARHIN

Lemma 1.3. — If $\operatorname{End}_{\widetilde{G}_{\ell,X,K}}(X_{\ell})$ is a field then $\operatorname{End}_{K}(X)$ has no zero divisors, i.e., $\operatorname{End}_{K}(X) \otimes \mathbb{Q}$ is a division algebra over \mathbb{Q} .

Proof. — It follows that $\operatorname{End}_K(X) \otimes \mathbb{Z}/\ell\mathbb{Z}$ is also a field and therefore has no zero divisors. Suppose that u, v are non-zero elements of $\operatorname{End}_K(X)$ with uv = 0. Dividing (if possible) u and v by suitable powers of ℓ in $\operatorname{End}_K(X)$, we may assume that both u and v do not lie in $\ell \operatorname{End}_K(X)$ and induce non-zero elements in $\operatorname{End}_K(X) \otimes \mathbb{Z}/\ell\mathbb{Z}$ with zero product. Contradiction.

Let us put $\operatorname{End}^0(X) := \operatorname{End}(X) \otimes \mathbb{Q}$. Then $\operatorname{End}^0(X)$ is a semisimple finitedimensional \mathbb{Q} -algebra [21, §21]. Clearly, the natural map $\operatorname{Aut}(\operatorname{End}(X)) \to$ $\operatorname{Aut}(\operatorname{End}^0(X))$ is an embedding. This allows us to view κ_X as a homomorphism

$$\kappa_X : \operatorname{Gal}(K) \longrightarrow \operatorname{Aut}(\operatorname{End}(X)) \subset \operatorname{Aut}(\operatorname{End}^0(X)),$$

whose image coincides with $\Gamma_K \subset \operatorname{Aut}(\operatorname{End}(X)) \subset \operatorname{Aut}(\operatorname{End}^0(X))$; the subalgebra $\operatorname{End}^0(X)^{\Gamma_K}$ of Γ_K -invariants coincides with $\operatorname{End}_K(X) \otimes \mathbb{Q}$.

Remark 1.4

(i) Let us split the semisimple \mathbb{Q} -algebra $\operatorname{End}^0(X)$ into a finite direct product $\operatorname{End}^0(X) = \prod_{s \in \mathcal{I}} D_s$ of simple \mathbb{Q} -algebras D_s . (Here \mathcal{I} is identified with the set of minimal two-sided ideals in $\operatorname{End}^0(X)$.) Let e_s be the identity element of D_s . One may view e_s as an idempotent in $\operatorname{End}^0(X)$. Clearly,

$$1_X = \sum_{s \in \mathcal{I}} e_s \in \operatorname{End}^0(X), \quad e_s e_t = 0 \,\,\forall \, s \neq t.$$

There exists a positive integer N such that all $N \cdot e_s$ lie in End(X). We write X_s for the image $X_s := (Ne_s)(X)$; it is an abelian subvariety in X of positive dimension. Clearly, the sum map

$$\pi_X:\prod_s X_s \longrightarrow X, \quad (x_s) \longmapsto \sum_s x_s$$

is an isogeny. It is also clear that the intersection $D_s \cap \operatorname{End}(X)$ leaves $X_s \subset X$ invariant. This gives us a natural identification $D_s \cong \operatorname{End}^0(X_s)$. One may easily check that each X_s is isogenous to a self-product of (absolutely) simple abelian variety. Clearly, if $s \neq t$ then $\operatorname{Hom}(X_s, X_t) = 0$.

(ii) We write C_s for the center of D_s . Then C_s coincides with the center of $\operatorname{End}^0(X_s)$ and is therefore either a totally real number field of degree dividing $\dim(X_s)$ or a CM-field of degree dividing $2\dim(X_s)$ [**21**, p. 202]; the center C of $\operatorname{End}^0(X)$ coincides with $\prod_{s\in\mathcal{T}} C_s = \bigoplus_{s\in S} C_s$.

(iii) All the sets

$$\{e_s \mid s \in \mathcal{I}\} \subset \bigoplus_{s \in \mathcal{I}} \mathbb{Q} \cdot e_s \subset \bigoplus_{s \in \mathcal{I}} C_s = C$$

SÉMINAIRES & CONGRÈS 11

192

are stable under the Galois action $\operatorname{Gal}(K) \xrightarrow{\kappa_X} \operatorname{Aut}(\operatorname{End}^0(X))$. In particular, there is a continuous homomorphism from $\operatorname{Gal}(K)$ to the group $\operatorname{Perm}(\mathcal{I})$ of permutations of \mathcal{I} such that its kernel contains $\ker(\kappa_X)$ and

$$e_{\sigma(s)} = \kappa_X(\sigma)(e_s) = {}^{\sigma}e_s, \ {}^{\sigma}(C_s) = C_{\sigma(s)}, \ {}^{\sigma}(D_s) = D_{\sigma(s)} \quad \forall \sigma \in \operatorname{Gal}(K), s \in \mathcal{I}.$$

It follows that $X_{\sigma(s)} = Ne_{\sigma(s)}(X) = \sigma(Ne_s(X)) = \sigma(X_s)$; in particular, abelian subvarieties X_s and $X_{\sigma(s)}$ have the same dimension and $u \mapsto {}^{\sigma}u$ gives rise to an isomorphism of Q-algebras $\operatorname{End}^0(X_{\sigma(s)}) \cong \operatorname{End}^0(X_s)$.

(iv) If J is a non-empty Galois-invariant subset in \mathcal{J} then the sum $\sum_{s \in J} Ne_s$ is Galois-invariant and therefore lies in $\operatorname{End}_K(X)$. If J' is another Galois-invariant subset of \mathcal{I} that does not meet J then $\sum_{s \in J} Ne_s$ also lies in $\operatorname{End}_K(X)$ and $\sum_{s \in J} Ne_s \sum_{s \in J'} Ne_s = 0$. Assume that $\operatorname{End}_K(X)$ has no zero divisors. It follows that \mathcal{I} must consist of one Galois orbit; in particular, all X_s have the same dimension equal to $\dim(X)/\#(\mathcal{I})$. In addition, if $t \in \mathcal{I}$, $\operatorname{Gal}(K)_t$ is the stabilizer of t in $\operatorname{Gal}(K)$ and F_t is the subfield of $\operatorname{Gal}(K)_t$ -invariants in the separable closure of K then it follows easily that $\operatorname{Gal}(K)_t$ is an open subgroup of index $\#(\mathcal{I})$ in $\operatorname{Gal}(K)$, the field extension F_t/K is separable of degree $\#(\mathcal{I})$ and $\prod_{s \in S} X_s$ is isomorphic over K_a to the Weil restriction $\operatorname{Res}_{F_t/K}(X_t)$. This implies that X is isogenous over K_a to $\operatorname{Res}_{F_t/K}(X_t)$.

Theorem 1.5. — Suppose that ℓ is a prime, K is a field of characteristic $\neq \ell$. Suppose that X is an abelian variety of positive dimension g defined over K. Assume that $\widetilde{G}_{\ell,X,K}$ contains a subgroup \mathcal{G} such $\operatorname{End}_{\mathcal{G}}(X_{\ell})$ is a field.

Then one of the following conditions holds:

(a) The center of $\operatorname{End}^0(X)$ is a field. In other words, $\operatorname{End}^0(X)$ is a simple \mathbb{Q} -algebra.

(b)

(i) The prime ℓ is odd;

(ii) there exist a positive integer r > 1 dividing g, a field F with

$$K \subset K(X_{\ell})^{\mathcal{G}} =: L \subset F \subset K(X_{\ell}), \quad [F:L] = r$$

and a g/r-dimensional abelian variety Y over F such that $\operatorname{End}^0(Y)$ is a simple \mathbb{Q} -algebra, the \mathbb{Q} -algebra $\operatorname{End}^0(X)$ is isomorphic to the direct sum of r copies of $\operatorname{End}^0(Y)$ and the Weil restriction $\operatorname{Res}_{F/L}(Y)$ is isogenous over K_a to X. In particular, X is isogenous over K_a to a product of g/r-dimensional abelian varieties. In addition, \mathcal{G} contains a subgroup of index r;

(c)

(i) The prime $\ell = 2$;

(ii) there exist a positive integer r > 1 dividing g, fields L and F with

 $K \subset K(X_4)^{\mathcal{G}} \subset L \subset F \subset K(X_4), \quad [F:L] = r$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005