Séminaires & Congrès 11, 2005, p. 21–28

ADDITION BEHAVIOR OF A NUMERICAL SEMIGROUP

by

Maria Bras-Amorós

Résumé (Comportement de l'addition dans un semi-groupe numérique). — Dans ce travail, nous étudions des objets qui décrivent le comportement de l'addition dans un semi-groupe numérique, tout en montrant qu'ils le déterminent complètement. Ensuite, nous étudions le cas des semi-groupes numériques de type Arf et en donnons quelques résultats spécifiques.

Introduction

Let \mathbb{N}_0 denote the set of all non-negative integers. A numerical semigroup is a subset Λ of \mathbb{N}_0 containing 0, closed under summation and with finite complement in \mathbb{N}_0 . For a numerical semigroup Λ define the genus of Λ as the number $g = \#(\mathbb{N}_0 \setminus \Lambda)$ and the conductor of Λ as the unique integer $c \in \Lambda$ such that $c-1 \notin \Lambda$ and $c+\mathbb{N}_0 \subseteq \Lambda$. The elements in Λ are called the non-gaps of Λ while the elements in $\Lambda^c = \mathbb{N}_0 \setminus \Lambda$ are called the gaps of Λ . The enumeration of Λ is the unique increasing bijective map $\lambda : \mathbb{N}_0 \to \Lambda$. We will use λ_i for $\lambda(i)$.

A first object describing the addition behavior in a numerical semigroup with enumeration λ is the binary operation \oplus defined by $i \oplus j = \lambda^{-1}(\lambda_i + \lambda_j)$. We will show that this operation determines completely the numerical semigroup.

Let F/\mathbb{F} be a function field and let P be a rational point of F/\mathbb{F} . For a divisor D of F/\mathbb{F} , let $\mathcal{L}(D) = \{0\} \cup \{f \in F^* \mid (f) + D \ge 0\}$. Define $A = \bigcup_{m \ge 0} \mathcal{L}(mP)$ and let

Abstract. — In this work we study some objects describing the addition behavior of a numerical semigroup and we prove that they uniquely determine the numerical semigroup. We then study the case of Arf numerical semigroups and find some specific results.

²⁰⁰⁰ Mathematics Subject Classification. — 20M99, 94B27.

Key words and phrases. — Numerical semigroup, Arf semigroup.

This work was supported in part by the Spanish CICYT under Grant TIC2003-08604-C04-01, by Catalan DURSI under Grant 2001SGR 00219.

M. BRAS-AMORÓS

 $\Lambda = \{-v_P(f) \mid f \in A \setminus \{0\}\} = \{-v_i \mid i \in \mathbb{N}_0\} \text{ with } -v_i < -v_{i+1}. \text{ It is well known} \\ \text{that the number of elements in } \mathbb{N}_0 \text{ which are not in } \Lambda \text{ is equal to the genus of the} \\ \text{function field. Furthermore, } v_P(1) = 0 \text{ and } v_P(fg) = v_P(f) + v_P(g) \text{ for all } f, g \in A. \\ \text{Hence, } \Lambda \text{ is a numerical semigroup. It is called the Weierstrass semigroup at } P. \\ \text{Suppose moreover that } P_1, \ldots, P_n \text{ are pairwise distinct rational points of } F/\mathbb{F}_q \text{ which} \\ \text{are different from } P \text{ and let } \varphi \text{ be the map } A \to \mathbb{F}_q^n \text{ such that } f \mapsto (f(P_1), \ldots, f(P_n)). \\ \text{For } m \geq 0 \text{ the one-point Goppa code of order } m \text{ associated to } P \text{ and } P_1, \ldots, P_n \text{ is defined as } C_m = \varphi(\mathcal{L}(\lambda_m P))^{\perp}. \end{cases}$

A second object describing the addition behavior of a numerical semigroup Λ with enumeration λ are the sequence of sets (N_i) defined by $N_i = \{j \in \mathbb{N}_0 \mid \lambda_i - \lambda_j \in \Lambda\}$ and the sequence (ν_i) defined by $\nu_i = \#N_i$. A first application of the sequence (ν_i) is on the order bound on the minimum distance of the code C_m , defined as $d_{\text{ORD}}^{\varphi}(C_m) =$ $\min\{\nu_i \mid i > m, C_i \neq C_{i-1}\}$ and satisfying $d_{C_m} \ge d_{\text{ORD}}^{\varphi}(C_m)$, where d_{C_m} is the minimum distance of the code C_m [7, 10, 9]. A second application is on the definition of improved codes. Let $\mathcal{F} = \{f_i \in A \mid i \in \mathbb{N}_0\}$ be such that $v_P(f_i) = v_i$. Given a designed minimum distance $\delta \in \mathbb{N}_0$, define $\widetilde{C}_{\varphi}(\delta) = [\varphi(f_i) \mid \nu_i < \delta, C_i \neq C_{i-1}]^{\perp}$, where $[u_1, \ldots, u_n]$ is the \mathbb{F}_q -vector space spanned by u_1, \ldots, u_n . This is a code improving the dimension of one-point Goppa codes while keeping the same designed minimum distance [8].

Notice that in both applications of the sequence (ν_i) its increasingness is very important. In [4] we prove that the unique numerical semigroup for which (ν_i) is strictly increasing is \mathbb{N}_0 while the only numerical semigroups for which it is nondecreasing are ordinary numerical semigroups. This gives a characterization of a class of semigroups by means of a property on the sequence (ν_i) . In this work we show that a numerical semigroup can be uniquely determined by its associated sequence (ν_i) . The proof, which was already given in [4] is constructive. So, we get an algorithm to obtain the semigroup from the sequence (ν_i) . This algorithm is very technical. Here, for the case of Arf numerical semigroups we present three new algorithms which are much more simple.

In Section 1 we show that given a numerical semigroup the implicit binary operation \oplus uniquely determines it. In Section 2 we show that given a numerical semigroup the sequence ν_i determines it uniquely and give a constructive algorithm. In Section 3 we give, for the case of Arf numerical semigroups, a much simpler construction of the semigroup from the associated sequence (ν_i) .

1. The operation \oplus determines a semigroup

Definition 1.1. — Given a numerical semigroup Λ with enumeration λ , define the binary operation \oplus in \mathbb{N}_0 by

$$i \oplus j = \lambda^{-1} (\lambda_i + \lambda_j).$$

SÉMINAIRES & CONGRÈS 11

Remark 1.2. — Let Λ be a numerical semigroup with enumeration λ , genus g and conductor c. If g(t) is the number of gaps which are smaller than λ_t , then it is obvious that $\lambda_t = g(t) + t$. As a consequence,

$$\lambda_t = g + t \text{ for all } t \ge \lambda^{-1}(c),$$

$$\lambda_t < g + t \text{ for all } t < \lambda^{-1}(c).$$

Notice that, in particular, $\lambda^{-1}(c) = c - g$.

Lemma 1.3. — Let Λ be a numerical semigroup with enumeration λ and conductor c. Then, for any $a \in \mathbb{N}_0$,

$$\lambda_{a+b} \ge \lambda_a + b$$
 for all $b \in \mathbb{N}_0$,

with equality if $\lambda_a \ge c$.

Proof. — We have $\lambda_{a+b} = \lambda_a + b$ if b is such that there are no gaps between λ_a and λ_{a+b} while $\lambda_{a+b} > \lambda_a + b$ if b is such that there is at least one gap between λ_a and λ_{a+b} . If $\lambda_a \ge c$, there will be no gaps larger than λ_a and so, $\lambda_{a+b} = \lambda_a + b$ for all b, while if $\lambda_a < c$, the most we can say is $\lambda_{a+b} \ge \lambda_a + b$.

Lemma 1.4. — Let Λ be a numerical semigroup with enumeration λ and conductor c. Then, for any $a, b \in \mathbb{N}_0$,

$$a \oplus b \leqslant a + \lambda_b$$
,

with equality if $\lambda_a \ge c$.

Proof. — We have $\lambda_{a\oplus b} = \lambda_a + \lambda_b$ by definition of $a \oplus b$ and $\lambda_a + \lambda_b \leq \lambda_{a+\lambda_b}$ for all b, with equality if $\lambda_a \geq c$, by Lemma 1.3. Since λ is bijective and increasing, this means $a \oplus b \leq a + \lambda_b$, with equality if $\lambda_a \geq c$.

Proposition 1.5. — A numerical semigroup Λ is uniquely determined by the binary operation \oplus .

Proof. — We will show that Λ is unique by proving that λ_i is uniquely determined by \oplus for all $i \in \mathbb{N}_0$. By Lemma 1.4,

$$i \oplus j \leq j + \lambda_i \text{ for all } j,$$

$$i \oplus j = j + \lambda_i \text{ for all } j \text{ with } \lambda_j \geq c$$

Therefore, $\max_{j} \{i \oplus j - j\}$ exists for all *i*, is uniquely determined by \oplus and it is exactly λ_i .

2. The sequence (ν_i) determines a semigroup

In this section we prove that any numerical semigroup is uniquely determined by the associated sequence (ν_i) . We will use the following well-known result on the values ν_i .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005

Proposition 2.1. — Let Λ be a numerical semigroup with genus g, conductor c and enumeration λ . Let g(i) be the number of gaps smaller than λ_i and let

$$D(i) = \{ l \in \Lambda^c \mid \lambda_i - l \in \Lambda^c \}.$$

Then for all $i \in \mathbb{N}_0$,

$$\nu_i = i - g(i) + \#D(i) + 1.$$

In particular, for all $i \ge 2c - g - 1$ (or equivalently, for all i such that $\lambda_i \ge 2c - 1$), $\nu_i = i - g + 1$.

Proof. — [10, Theorem 3.8.].

Theorem 2.2. — Suppose that (ν_i) corresponds to the numerical semigroup Λ . Then there is no other numerical semigroup with the same sequence (ν_i) .

Proof. — If $\Lambda = \mathbb{N}_0$ then (ν_i) is strictly increasing and there is no other semigroup with the same sequence (ν_i) (see [4]).

Suppose that Λ is not trivial. Then we can determine the genus and the conductor from the sequence (ν_i) . Indeed, let k = 2c - g - 2. In the following we will show how to determine k without the knowledge of c and g. Notice that $c \ge 2$ and so $2c - 2 \ge c$. This implies $k = \lambda^{-1}(2c-2)$ and g(k) = g. By Proposition 2.1, $\nu_k = k - g + \#D(k) + 1$. But $D(k) = \{c - 1\}$. So, $\nu_k = k - g + 2$. By Proposition 2.1 again, $\nu_i = i - g + 1$ for all i > k and so we have

$$k = \max\{i \mid \nu_i = \nu_{i+1}\}.$$

We can determine the genus as

 $g = k + 2 - \nu_k$

and the conductor as

$$c = \frac{k+g+2}{2}$$

Now we know that $\{0\} \in \Lambda$ and $\{i \in \mathbb{N}_0 \mid i \ge c\} \subseteq \Lambda$ and, furthermore, $\{1, c-1\} \subseteq \Lambda^c$. It remains to determine for all $i \in \{2, \ldots, c-2\}$ whether $i \in \Lambda$. Let us assume $i \in \{2, \ldots, c-2\}$. On one hand, c-1+i-g > c-g and so $\lambda_{c-1+i-g} > c$. This means that g(c-1+i-g) = g and hence

(1)
$$\nu_{c-1+i-g} = c - 1 + i - g - g + \#D(c - 1 + i - g) + 1$$

On the other hand, if we define D(i) to be

$$\widetilde{D}(i) = \{l \in \Lambda^c \mid c - 1 + i - l \in \Lambda^c, i < l < c - 1\}$$

then

(2)
$$D(c-1+i-g) = \begin{cases} \widetilde{D}(i) \cup \{c-1,i\} & \text{if } i \in \Lambda^c, \\ \widetilde{D}(i) & \text{otherwise.} \end{cases}$$

So, from (1) and (2),

i is a non-gap
$$\iff \nu_{c-1+i-g} = c + i - 2g + \# D(i).$$

SÉMINAIRES & CONGRÈS 11

This gives an inductive procedure to decide whether *i* belongs to Λ decreasingly from i = c - 2 to i = 2.

This theorem suggests the following algorithm to get Λ from (ν_i) .

 $\begin{aligned} &-\text{ Compute } k = \max\{i \mid \nu_i = \nu_{i+1}\}.\\ &-\text{ Compute } g = k+2-\nu_k \text{ and } c = \frac{k+g+2}{2}.\\ &-\{0\} \cup \{i \in \mathbb{N}_0 \mid i \ge c\} \subseteq \Lambda, \ \{1, c-1\} \subseteq \Lambda^c.\\ &-\text{ For all } i \in \{2, \dots, c-2\},\\ &-\text{ Compute}\\ &\widetilde{D}(i) = \{l \in \Lambda^c \mid c-1+i-l \in \Lambda^c, i < l < c-1\}\\ &-i \text{ is a non-gap} \Longleftrightarrow \nu_{c-1+i-g} = c+i-2g + \#\widetilde{D}(i). \end{aligned}$

Remark 2.3. — From the proof of Theorem 2.2 we see that a semigroup can be determined by $k = \max\{i \mid \nu_i = \nu_{i+1}\}$ and the values ν_i for $i \in \{c - g + 1, \dots, 2c - g - 3\}$.

3. Arf case

A numerical semigroup Λ is said to be Arf if for every $x, y, z \in \Lambda$ with $x \ge y \ge z$, it holds that $x + y - z \in \Lambda$. Arf numerical semigroups have been widely studied in $[\mathbf{1, 6, 12, 3, 2, 4}]$. In particular we have that a numerical semigroup is Arf if and only if for every $x, y \in \Lambda$ with $x \ge y$, it holds that $2x - y \in \Lambda$ [6]. In [11, 5, 3, 2] a study on the codes of maximum dimension among the codes in a certain class decoding the so-called generic errors leads to the following definition.

Definition 3.1. — Given a numerical semigroup Λ with enumeration λ and a non-negative integer *i* define

$$\Sigma_i := \{ l \in \Lambda \mid l \geqslant \lambda_i \}.$$

We will see that the sets Σ_i are very important when studying Arf numerical semigroups. In particular the study of the codes explained above lead to new characterizations of Arf numerical semigroups [2]. Let us first state three results on general numerical semigroups related to the sets Σ_i .

Proposition 3.2. — Given a numerical semigroup Λ and a non-negative integer *i*,

- (1) $\lambda_i + \Sigma_i \subset \Sigma_i + \Sigma_i$,
- (2) $\#\{j \in \mathbb{N}_0 \mid \lambda_j \notin \Sigma_i + \Sigma_i\} \leq \lambda_i + i$,
- (3) $\{j \in \mathbb{N}_0 \mid \lambda_j \notin \Sigma_i + \Sigma_i\} \subseteq \{j \in \mathbb{N}_0 \mid \nu_j \leq 2i\}.$

Proof

(1) Obvious.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005