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ON THE CALCULATION AND ESTIMATION OF

WARING NUMBER FOR FINITE FIELDS

by

Oscar Moreno & Francis N. Castro

Abstract. — In this paper we present a new method that often computes the exact

value of the Waring number or estimates it. We also improve the lower bound for the

Waring problem for large finite fields.

Résumé (Sur le calcul et l’estimation du nombre de Waring pour les corps finis)
Dans cet article, nous présentons une nouvelle méthode qui permet souvent de

calculer la valeur exacte du nombre de Waring ou d’en donner une estimation. Nous

améliorons également la borne inférieure relative au problème de Waring pour de

grands corps finis.

1. Review of some results about the divisibility of the number of

solutions of a system of polynomials over finite fields

In this section we present recent results about the divisibility of the number of

solutions of a system of polynomials equation over finite fields.

Let k be a positive integer k = a0 + a1p + a2p
2 + · · · + ampm where 0 6 ai < p.

We define the p-weight of k by σp(k) =
∑m

i=0 ai. The p-weight degree of a monomial

X
d = Xd1

1 · · ·Xdn
n is wp(X

d) = σp(d1) + · · · + σp(dn). The p-weight degree of a

polynomial F (X1, . . . , Xn) =
∑

d adX
d is wp(F ) = max

X
d, ad 6=0 wp(X

d).

Let F1, . . . , Fr be polynomials in n variables over Fq, where q = pf .

Fk(X) =

Nk
∑

i=1

aki
X

dki .
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Let |N | be the number of common zeros to the r polynomials. Introduce r auxiliary

variables Y1, . . . , Yr.

qr|N | =
∑

(X1,...,Xn)∈Fq

(

∑

Y1∈Fq

(Y1F1(X1, . . . , Xn))

)

· · ·

(

∑

Yr∈Fq

(YrFr(X1, . . . , Xn))

)

=
∑

X

∑

Y

(Y1F1(X) + · · · + YrFr(X)).

We define L as follows

(1) L = min
{

∑r
k=1

∑n
j=1

∑Nk

i=1 σ(tijk)/(p − 1)
}

− rf,

where the minimum is taken over all tijk’s (0 6 tijk 6 q − 1), satisfying the following

conditions

t111 + t221 + · · · + t1N11 ≡ 0 mod q − 1,

t112 + t222 + · · · + t2N22 ≡ 0 mod q − 1,

...

t11r + t22r + · · · + tnNrr ≡ 0 mod q − 1,

d111t111 + d121t121 + · · · + d1Nrrt1Nrr ≡ 0 mod q − 1,

d211t211 + d221t221 + · · · + d2Nrrt2Nrr ≡ 0 mod q − 1,

...

dn11tn11 + dn21tn21 + · · · + dnNrrtnNrr ≡ 0 mod q − 1.

Now we are ready to state the main theorem of [15].

Theorem 1.1. — Let G be the following class of polynomials

G = {a11X
d11 + · · · + a1N1

X
d1N1 , · · · , ar1X

dr1 + · · · , arNr
X

drNr | aij ∈ Fq}.

With L as above, there are polynomials F1, . . . , Fr in G, such that |N | is divisible by

pL−fr but not divisible by pL+1−fr.

Theorem 1.1 gives a tight bound that involves the solution of a set of modular

equations which are not always easy to solve. In [15], we introduced several techniques

in order to give concrete approximate solutions.

The following result gives a dramatics improvement to Ax-Katz’s, and Moreno-

Moreno’s results for certain diagonal equations.

Theorem 1.2. — Let q = pf and let di be a divisor of qm−1 + qm−2 + · · · + 1 for

i = 1, . . . , n. Let a1X
d1

1 + · · · + anXdn
n be a polynomial over Fqml . Then pµ divides

|N |, where µ > (n − m)lf .
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Let s be the smallest positive integer such that the equation xd
1 + · · · + xd

s = β

has at least a solution for every β ∈ Fpf . We denote this s by g(d, pf ). Let L =

{xd
1 + · · · + xd

s | x1, . . . , xs ∈ Fqf }. g(d, pf ) exists if and only if L is not a proper

subfield of Fpf (see [19]). We will suppose from now on that g(d, pf ) exists. Without

loss of generality, we are going to assume throughout the paper that d divides pf − 1.

Note that if d divides pf −1, then g(d, pf ) > 2. Hence, the minimum value of g(d, pf)

in the non-trivial case is 2. In [13], we proved the following theorem:

Theorem 1.3. — g(pj + 1, pf) = 2 whenever (pj + 1) | (pf − 1).

Remark 1.4. — In [5], Helleseth indicates that is possible to combine the Theorem of

Delsarte (see [3]) and other results to estimate the Waring number for finite fields of

characteristic 2.

2. Review of Applications of Divisibility to Covering Radius

In this section we will state the main results of [11] and [12].

In [11], we solved a question posed in [2]. The question was to give an direct proof of

the computation of the covering radius for BCH(3) (see [2]). Recall that the covering

radius of a code C is the smallest r such that the spheres Br(c) = {c′ ∈ C | d(c, c′) 6 r}

with c ∈ C cover F
n
q (n is the length of the code).

If a code C has minimum distance 2e + 1 and all the coset leaders have weight

6 e + 1 then the code is called quasi-perfect (A coset leader of a coset α + C is a

vector of smallest weight in its coset). The covering radius is the weight of a coset

leader with maximum weight (see [10]).

Theorem 2.1. — Let α be a primitive root of F2f and let C be the code of length

n = 2f − 1 with zeros α, αd over F2f , where d = 2i + 1. If (i, f) = 1, then C is a

quasi-perfect code.

Theorem 2.2. — Let α be a primitive root of F2f . The code C with zeros α, αd, αd′

and minimum distance 7, where d = 2i +1, and d′ = 2j +1, has covering radius 5 for

f > 8.

Theorem 2.2 provided an elementary proof for BCH(3), as well as the Non-BCH

triple error correcting codes of section 9.11 in [10]. Notice that the computation of

the covering radius of BCH(3) required 3 papers (see [1], [4], and [6]). The first

paper by J.A. van der Horst and T. Berger; the second paper by E.F. Assmus and

H.F. Mattson used the Delsarte’s bound, and the final paper by Helleseth invokes the

Weil-Carlitz-Uchiyama bound.

An immediate consequence of the above theorem is the calculation of the covering

radius of the Non-BCH triple correcting code of section 9.11 in [10].
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Corollary 2.3. — Let f = 2t + 1 and α be a primitive root of F2f . The code C with

zeroes α, αd, αd′

, where d = 2t−1 + 1, and d′ = 2t + 1 has covering radius 5.

Let d1, d2 be distinct natural numbers. Let N(d1, d2, n, Fq) be the number of

solutions over Fq of the following system of polynomials equations:

xd1

1 + xd1

2 + xd1

3 = β1x
d1

4

xd2

1 + xd2

2 + xd2

3 = β2x
d2

4

Now we state a generalization of Theorem 2.1.

Theorem 2.4. — Let α be a primitive root of F2f and let C be the code of length

n = 2f − 1 with zeros αd1 , αd2 over F2f . We assume that the minimum distance of C

is 5. Then C is a quasi-perfect code whenever 4 divides N(d1, d2, 4, F2f ).

Theorem 2.5. — Let α be a primitive root of F22t+1 , and let C be the code of length

n = 22t+1 − 1 with zeros α2i+1, α2j+1. If C has minimum distance 5, then C is

quasi-perfect.

Corollary 2.6. — Let α be a primitive root of F2f .

(1) Let f = 2t + 1 and let C be the code of length n = 22t+1 − 1 with zeros

α2t−1+1, α2t+1 over F22t+1 , then C is a quasi-perfect code.

(2) Let C be the code of length n = 2f − 1 with zeros α, α22i−2i+1 over F2f , then

C is a quasi-perfect code whenever (i, f) = 1.

Remark 2.7. — Note that the dual of the code C with zeroes α and α22i−2i+1 over

F2f for f/(f, i) odd has three nonzero weights (Kasami code, see [7], [8]) and using

a result of Delsarte (see [10]) gives that the covering radius is 3. For the case when

f/(f, i) is even, the result of Delsarte implies that the covering radius of C is at

most 5.

3. On the Exact Value of Waring Number

In this section we introduce a new technique to compute the Waring number. This

is a criterion to decide if the Waring number is equal to 2. We also generalize Theorem

1.3. Let p be a prime number, for any integer a, define ordp(a) as follows:

ordp(a) = max{k | pk divides a}.

Let Nn(β) be the number of solutions of the equation xd
1 + xd

2 + · · ·+ xd
n−1 = βxd

n

over F
×
pf .

Lemma 3.1. — With the above notations. If σp(c(p
f −1)/d) > f(p − 1)/2 for 1 6 c 6

d − 1, then pdf/2e divide N3(β) for any β 6= 0.
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Proof. — The system of modular equations associated to xd
1 + xd

2 = βxd
3 is the fol-

lowing system:

dj1 ≡ 0 mod pf − 1

dj2 ≡ 0 mod pf − 1

dj3 ≡ 0 mod pf − 1

j1 + j2 + j3 ≡ pf − 1

(2)

(see [14, section 3] and [15, section IV]).

The solutions of the modular system of equations (2) determine the p-divisibility

of N3(β), i.e., if

µ = min
(j1,j2,j3)

is a solution of (2)

{σp(j1) + σp(j2) + σp(j3)

p − 1

}

− f,

then pµ divides N3(β). Theorem 8 in [14] implies that is enough to consider ji 6= 0

in the modular system (2). Note that the solutions of the first three equations are of

the form:

(3) ji =
c(pf − 1)

d
for 1 6 c 6 d,

since dji = c(pf − 1) where c 6 d. Note that if c = d, the ji = q − 1, hence

σp(ji) = f(p − 1). Therefore we only need to consider c’s satisfying 1 6 c 6 d − 1.

We now apply the function σp to (3) and obtain that

σp(ji) = σp

(c(pf − 1)

d

)

>
f(p − 1)

2
.

Therefore σp(j1)+σp(j2)+σp(j3) > 3f(p− 1)/2. Therefore µ >
3f
2 −f = f/2. Hence

pdf/2e divides N3(β).

Remark 3.2. — Note that if d has p-weight 2, then d satisfies hypothesis of Lemma

3.1. But there are many d’s such that σp(d) > 2 and σ2(c(p
f − 1)/d) > f(p − 1)/2

for 1 6 c 6 d − 1.

Theorem 3.3. — Let N(xd
1 +xd

2) be the number of solutions of the equation xd
1 +xd

2 = 0

over Fpf . If σp(c(p
f −1)/d) >

f(p−1)
2 for 1 6 c 6 d−1 and ordp(N(xd

1 +xd
2)) < df/2e,

then g(d, pf ) = 2.

Proof. — We need to prove that the following equation has a solution:

(4) xd
1 + xd

2 = β

for any β ∈ Fpf .

The proof consists of two steps:
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