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ON CURVES OVER FINITE FIELDS
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Abstract. — In these notes we present some basic results of the Theory of Curves over
Finite Fields. Assuming a famous theorem of A. Weil, which bounds the number of
solutions in a finite field (i.e., number of rational points) in terms of the genus and

the cardinality of the finite field, we then prove several other related bounds (bounds
of Serre, Ihara, Stohr-Voloch, etc.). We then treat Maximal Curves (classification
and genus spectrum). Maximal curves are the curves attaining the upper bound of
A. Weil. If the genus of the curve is large with respect to the cardinality of the
finite field, Ihara noticed that Weil’s bound cannot be reached and he introduced
then a quantity A(q) for the study of the asymptotics of curves over a fixed finite
field. This leads to towers of curves and we devote special attention to the so-called
recursive towers of curves. We present several examples of recursive towers with
good asymptotic behaviour, some of them attaining the Drinfeld-Vladut bound. The
connection with the asymptotics of linear codes is a celebrated result of Tsfasman-
Vladut-Zink, which is obtained via Goppa’s construction of codes from algebraic
curves over finite fields.

Résumé (Courbes sur des corps finis). — Nous présentons des résultats élémentaires
sur les courbes sur les corps finis et leurs points rationnels. Nous avons fait un ef-
fort pour donner une présentation aussi simple que possible, la rendant accessible
aux non spécialistes. Parmi ces résultats se trouvent : le théorème de Weil (l’hypo-
thèse de Riemann dans ce contexte), son amélioration donnée par Serre, la borne
de Ihara sur le genre pour les courbes maximales, genre et classification des courbes
maximales, théorie de Stohr-Voloch des ordres de Frobenius pour les courbes planes,
constructions de courbes sur les corps finis ayant beaucoup de points rationnels, les
formules explicites de Serre, étude asymptotique des courbes sur les corps finis et
des codes correcteurs d’erreurs (la connexion entre elles est un célèbre théorème de
Tsfasman-Vladut-Zink), tours récursives de courbes et certaines tours particulière-
ment intéressantes (atteignant la borne de Drinfeld-Vladut sur des corps finis de
cardinal un carré ou atteignant la borne de Zink sur des corps finis de cardinal un
cube).
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1. Introduction

These notes reflect very closely the lectures given by the author at a “European

School on Algebraic Geometry and Information Theory”, held at C.I.R.M. – Luminy

- France in May 2003. They are intended as an invitation to the subject of curves

over finite fields. At several points we have sacrificed rigorness (without mention) in

favour of clarity or simplicity. Assuming to start with a very deep theorem of André

Weil (equivalent to the validity of Riemann’s Hypothesis for the situation of zeta

functions associated to nonsingular projective curves over finite fields) we then prove

several interesting related results with elementary methods (bounds of Serre, Ihara,

Stöhr-Voloch, Drinfeld-Vladut, etc.), and we give also several examples illustrating

those results.

These notes are organized as follows: Section 2 contains several bounds on the

number of rational points of curves over finite fields (see Theorems 2.2, 2.3, 2.14 and

2.17) and examples of curves attaining those bounds. Specially interesting here are

the curves attaining Weil’s bound, the so-called maximal curves; for these curves

there is a genus bound due to Ihara (see Proposition 2.8) which originated two basic

problems on maximal curves: the genus spectrum problem (see Theorem 2.11) and the

classification problem (see Theorems 2.10 and 2.12). For the classification problem a

very important tool is the Stöhr-Voloch theory of Frobenius – orders of morphisms

of curves over finite fields, and this theory is illustrated here just for projective plane

curves (see Theorem 2.17). Section 3 contains two simple and related methods for

the construction of curves with many rational points with respect to the genus (called

good curves). Both constructions lead to projective curves that are Kummer covers

of the projective line (or of another curve), and we also present a “recipe” due to

Hasse for the genus calculation for such covers. Several examples illustrating both

constructions are also presented.

Section 4 explains the basic facts on the asymptotic behaviour of curves and also

of linear codes over finite fields. The relation between the two asymptotics (of curves

and of codes) is a result due to Tsfasman-Vladut-Zink and this result represents

an improvement on the so-called Gilbert-Varshamov bound. We also prove here an

asymptotic bound due to Drinfeld-Vladut (see Proposition 4.3) which is obtained as

an application of a method of Serre (see Theorem 4.1). This motivates the definition of

towers of curves over finite fields which is the subject of Section 5. After introducing

the concepts of ramification locus and splitting locus, we explain their significance

when the tower is a tame tower (see Theorem 5.1). We then define recursive towers

and we give several examples illustrating applications of Theorem 5.1. Wild towers

are much harder to deal with than tame towers, and we give at the end of these notes

two very interesting examples of wild towers (see Examples 5.8 and 5.9). Example

5.9 is specially interesting since it is over finite fields with cubic cardinalities, and it
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gives in particular a generalization of a famous lower bound, on the asymptotics of

curves, due to T. Zink.

2. Bounds for the number of rational points

Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible polynomial (i.e., f(X,Y ) is

also irreducible over Fq the algebraic closure of the finite field Fq). The associated

affine plane curve C is defined by

C := {(a, b) ∈ Fq × Fq | f(a, b) = 0}
and we denote by C(Fq) the set of rational points; i.e.,

C(Fq) = {(a, b) ∈ C | a, b ∈ Fq}.

Goal. — Study the cardinality #C(Fq) with respect to the genus g(C).

The genus g(C) of a plane curve C satisfies

g(C) 6 (d− 1)(d− 2)/2,

where d :=deg f(X,Y ) is the degree of the irreducible polynomial defining the curve C.

The next lemma gives a simple criterion for absolute irreducibility.

Lemma 2.1(See[27]). — Let f(X,Y ) ∈ Fq[X,Y ] be a polynomial of the following type

f(X,Y ) = a0 · Y n + a1(X) · Y n−1 + · · · + an−1(X) · Y + an(X)

with a0 ∈ F∗
q and with a1(X), . . . , an−1(X), an(X) ∈ Fq[X ].

Suppose that gcd(n, deg an(X)) = 1 and that

deg an(X)

n
>

deg ai(X)

i
for each 1 6 i 6 n− 1,

then the polynomial f(X,Y ) is absolutely irreducible.

We are going to deal with more general algebraic curves, not just an affine plane

curve. Given n−1 polynomials f1(X1, . . . , Xn), f2(X1, . . . , Xn), . . . , fn−1(X1, . . . , Xn)

in the polynomial ring Fq[X1, . . . , Xn], they in general define an affine algebraic

curve C as

C := {(a1, a2, . . . , an) ∈ F
n

q | fj(a1, . . . , an) = 0 for all j = 1, 2, . . . , n− 1}
and its set C(Fq) of rational points as C(Fq) := {(a1, . . . , an) ∈ C | a1, a2, . . . , an ∈ Fq}.

A point P of a curve C is called nonsingular if there exists a tangent line to the

curve C at the point P . For example if P = (a, b) ∈ Fq × Fq is a point of the plane

curve associated to the polynomial f(X,Y ) ∈ Fq[X,Y ] (i.e., if we have f(a, b) = 0),

then the point P is called nonsingular when

fX(a, b) 6= 0 or fY (a, b) 6= 0,
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where fX and fY denote the partial derivatives. The curve C is called nonsingular if

every point P ∈ C is a nonsingular point. Also, we will deal with projective curves

here rather than with affine curves. For example, if C is the plane curve associated to

the polynomial f(X,Y ) in Fq[X,Y ] with d := deg f(X,Y ), then we define

F (X,Y, Z) = Zd · f (X/Z, Y/Z) and C̃ := {(a : b : c) ∈ P2(Fq) | F (a, b, c) = 0}.

The curve C̃ is a projective model for the affine curve C associated to f(X,Y ).

If the projective plane curve C̃ is nonsingular, then we have the equality g(C̃) =

(d− 1)(d− 2)/2. A point (a : b : c) of C̃ is said to be at infinity when c = 0.

The next theorem is due to A. Weil and it is the main result in this theory:

Theorem 2.2(See[33] and [30], Theor. V.2.3). — Let C be a projective and nonsingular,

absolutely irreducible curve defined over the finite field Fq with q elements. Then we

have

#C(Fq) 6 1 + q + 2
√
q · g(C).

Theorem 2.2 is a very deep result. It was proved in the particular case of elliptic

curves (i.e., the case g(C) = 1) by H. Hasse and in the general case by A. Weil

(see [33]). Theorem 2.2 says that the zeros of a certain “Congruence Zeta Function”

(associated to the curve by E. Artin in analogy with Dedekind’s Zeta Function for

quadratic number fields) all lie on the critical line Re(s) = 1/2. We can rewrite

Theorem 2.2 as follows

Theorem 2.3(See[33] and [30], Cor. V.1.16). — Let C be a projective and nonsingular,

absolutely irreducible algebraic curve defined over Fq and let g := g(C) denote its

genus. Then there exist algebraic integers α1, α2, . . . , α2g ∈ C with absolute value

|αj | =
√
q, for 1 6 j 6 2g, such that

#C(Fq) = q + 1 −
2g∑

j=1

αj .

Clearly, the bound in Theorem 2.2 follows from the equality in Theorem 2.3 by

taking αj = −√
q, for all values of j with 1 6 j 6 2g. We now define

Definition 2.4. — Let q = `2 be a square. We say that the curve C is Fq-maximal if it

attains the bound in Theorem 2.2; i.e., if it holds that

#C(Fq) = `2 + 1 + 2` · g(C).

Example 2.5(Hermitian curve over F`2). — Consider the projective plane curve C de-

fined over the finite field F`2 by the affine equation

f(X,Y ) = Y ` + Y −X`+1 ∈ F`2 [X,Y ].
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We have g(C) = `(` − 1)/2; indeed, the curve C is a nonsingular plane curve with

degree d satisfying d = ` + 1. The number of Fq-rational points (with q = `2) is

given by

#C(Fq) = 1 + `3 = 1 + `2 + 2` · `(`− 1)

2
;

i.e., the curve C is F`2-maximal. Indeed, the associated homogeneous polynomial is

F (X,Y, Z) = Y `Z + Y Z` −X`+1

and the point (0 : 1 : 0) is the unique point at infinity on the curve C. The affine

points are the points (a, b) ∈ Fq × Fq such that

b` + b = a`+1.

Observing that a`+1 is the norm for the extension F`2/F` and that b` + b is the trace

for F`2/F`, we conclude that

#C(F`2) = 1 + `3.

The next proposition, due to J.-P. Serre, enables one to construct other Fq-maximal

curves from known ones.

Proposition 2.6(See[26]). — Let ϕ : C → C1 be a surjective morphism defined over a

finite field Fq (i.e., both curves C and C1, and also the map ϕ are all defined over the

finite field Fq) and suppose that the curve C is Fq-maximal. Then the curve C1 is also

Fq-maximal.

Example 2.7. — Let C1 be the curve defined over F`2 by the following equation

f(X,Y ) = Y ` + Y −Xm, with m a divisor of `+ 1.

This curve C1 is F`2-maximal. Indeed, this follows from Proposition 2.6 since we have

the following surjective morphism (with n := (`+ 1)/m)

ϕ : C −→ C1

(a, b) 7−→ (an, b),

where the curve C is the one given in Example 2.5.

The genus of C1 satisfies (see Example 3.1 in Section 3)

g(C1) = (` − 1)(m− 1)/2.

One can check directly that the curve C1 is Fq-maximal with q = `2. Indeed, let us

denote by H the multiplicative subgroup of F∗
`2 with order |H | = (`− 1) ·m. We then

have:

(1) a ∈ H ∪ {0} implies that am ∈ F`.

Since b` + b = am for an affine point (a, b) ∈ C1 and since b` + b is the trace for the

extension F`2/F`, we get from the assertion in (1) that

#C1(F`2) > 1 + [1 +m(`− 1)] · `.
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