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Abstract. — Modular towers have been introduced by M. Fried. They are towers of
Hurwitz spaces, with levels corresponding to the characteristic quotients of the p-
universal Frattini cover of a fixed finite group and with p a prime divisor of the order
of the group. The tower of modular curves of levels pn (n > 0) is the original exam-
ple: the finite group is then the dihedral group of order 2p. There are diophantine
conjectures on modular towers, inspired by modular curves: the spirit is that over a
number field, rational points do not exist beyond a certain level. In this paper, which
is the first of a series of three on this topic in this volume, after defining modular
towers, we discuss the significance of these conjectures and explain some results.

Résumé(Une introduction au programme des tours modulaires). — Les tours modulaires
ont été introduites par M. Fried. Ce sont des tours d’espaces de Hurwitz dont les
niveaux correspondent aux quotients caractéristiques du p-revêtement universel de
Frattini d’un groupe fini fixé, le premier p étant un diviseur de l’ordre du groupe. La
tour des courbes modulaires de niveaux pn (n > 0) est l’exemple initial : le groupe fini
est dans ce cas le groupe diédral d’ordre 2p. Il y a des conjectures diophantiennes sur
les tours modulaires, qui s’inspirent de la situation des courbes modulaires : l’esprit
est que les points rationnels sur un corps de nombres fixé disparaissent au-delà d’un
certain niveau. Dans cet article, qui est le premier d’une série de trois sur le sujet
dans ce volume, après avoir revu la construction des tours modulaires, nous revenons
sur ces conjectures, en examinons l’impact et expliquons quelques résultats.
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Modular towers are due to M. Fried. They constitute a vertical development of

the Hurwitz space theory. A modular tower is a tower of Hurwitz moduli spaces

(HGn
(Cn))n≥0 (with maps going down) where the branch point number r ≥ 3 is

fixed and the projective sequence (Gn,Cn)n≥0 of groups Gn given with an r-tuple

Cn of conjugacy classes comes from a universal construction associated to a fixed finite

group G, a prime divisor p of |G| and r conjugacy classes of G of prime-to-p order.

The motivating example is the tower of modular curves (X1(pn))n>0: the group G

is then the dihedral group Dp given with the involution class repeated 4 times. The

foundations of the modular tower theory and the main dihedral group example are

recalled in the first part of the paper. There is an important group-theoretic aspect

which is further developed in Semmen’s paper [Sem] in this volume.

Persistence of rational points on high levels of a modular tower HGn
(Cn) is the

main diophantine question of the theory. It corresponds to the possibility of realizing

regularly all groups Gn with a bounded number of branch points and inertia groups of

prime-to-p order. The dihedral group example suggests that there are deep diophan-

tine obstructions when the base field is a number field. On the other hand, over `-adic

fields, the tendancy is the opposite. The second part of the paper focuses on these

diophantine questions. After stating and discussing the main conjectures, we give a

proof (based on the original papers) of some significant results of Fried-Kopeliovich

and Bailey-Fried in the number field case. In particular we pave the way to the proof

of the main diophantine conjecture in the special case of r = 4 branch point covers. A

structured approach of the missing stage is given in Fried’s paper [Fri] in this volume.

A final section is devoted to the similar questions over `-adic fields. We describe some

recent results due to A. Cadoret, B. Deschamps, M. Emsalem and the author.

We conclude this introduction with a seemingly unrelated example which was yet

the first step of the modular tower theory.

The original Fried-Serre example. — Take G = An and σ = (σ1, . . . , σr) an r-tuple of

3-cycles generating An and such that σ1 · · ·σr = 1. Let

1 −→ {±1} −→ Ãn −→ An −→ 1
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be the unique non-split degree 2 extension of An. Each 3-cycle σ ∈ An has a unique

lift σ̃ ∈ Ãn of order 3. The lifting invariant σ̃1 · · · σ̃r is ±1. Serre asked whether it is

1 or −1, initially in case n = 5, r = 4. Fried offered the following answer: the lifting

invariant is constant because the Hurwitz monodromy group Hr leaves the lifting

invariant unchanged (a straightforward observation) and acts transitively on tuples σ

(an easy check). As it is obviously 1 for σ of the form (σ, σ−1, τ, τ−1), it is always 1.

More generally the lifting invariant depends only on the Hr-orbit of σ, thus defining

an invariant of the corresponding component of the associated Hurwitz space. It can

be used to distinguish between two such components. For example, if there is a unique

component with lifting invariant 1, it is defined over Q; see §1.4.

Fried checked that there are 1 or 2 components (depending on whether g = r+1−n

is 0 or not). In the latter case, they have distinct lifting invariant so are both defined

over Q. In the former (n = r + 1 e.g. n = 5, r = 4), the whole Hurwitz space is

defined over Q (and the invariant is 1 if (and only if) n is odd). See [Fried], [Ser90a],

[Ser90b] for more on this example.

This example shows a basic idea of modular towers: for studying Hurwitz spaces

HG, it is interesting to consider extensions G̃→→ G and the associated Hurwitz spaces

H eG. The modular tower theory focuses on special extensions though: those that have

the Frattini property (as the extension Ãn → An does).

1. Construction and motivations

1.1. p-universal Frattini cover and lifting lemma. — Given a finite group G

and a prime divisor p of |G|(1), denote the universal p-Frattini cover of G by pG̃.

Recall (see [FJ86] for more details) that a surjective group homomorphism (a

group cover) ψ : H → G is said to be a Frattini cover if for each subgroup H ′ of H ,

ψ(H ′) = G ⇒ H ′ = H , or, equivalently, if its kernel is contained in every maximal

subgroup of G. For example, the homomorphism Z/(pα1
1 · · · p

αr
r )Z → Z/(p1 · · · pr)Z

is a Frattini cover (α1, . . . , αr > 0). There is a universal object for Frattini covers of

a given group G. It is denoted by G̃ and can be shown to be a projective profinite

cover of G [FJ86, proposition 20.33]. For example, for G = Z/(p1 · · · pr)Z, we have

G̃ = Zp1×· · ·×Zpr
. There also exists a universal object for Frattini covers ψ : H → G

of G with kernel a p-group. This group is called the universal p-Frattini cover of G

and is denoted by pG̃. It is a profinite group of rank equal to rank(G) which has this

p-projectivity property: every embedding problem for pG̃ with a p-group kernel has

a weak solution [BF02, p.117] p.117. As a consequence, its p-Sylows are projective,

(1)From the Schur-Zassenhaus lemma and the Frattini property, for p not dividing |G| there is no

non-trivial Frattini cover of G with p-group kernel, making this case uninteresting.
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hence are free pro-p groups (by [FJ86, proposition 20.37]) of finite rank (by Nielsen-

Schreier [FJ86, corollary 15.28]). For example, for G = Z/(p1 · · · pr)Z, we have

p1G̃ = Zp1 × Z/p2Z · · · × Z/prZ.

One then defines, from the kernel ker of the homomorphism pG̃ → G, a sequence

of characteristic subgroups of pG̃:

ker0 = ker, ker1 = kerp
0[ker0, ker0], . . . , kern = kerp

n−1[kern−1, kern−1], . . .

and for each n ≥ 0, one denotes by n
p G̃ the quotient pG̃/kern. Kernels kern are free

pro-p groups of pG̃ of finite rank and groups n
p G̃ are finite (from [FJ86, lemma 20.36],

kern−1/kern is isomorphic to Fm
p with m = rank(kern−1)) of rank ≤ rank(G). For

example, for G = Z/pZ, we have kern = pn+1Zp and n
p G̃ = Z/pn+1Z.

Lemma 1.1(Lifting Lemma) . — If C is a conjugacy class n
p G̃ of order(2) ρ prime to

p, then there exists a unique conjugacy class n+1
p G̃ that lifts C and is of order ρ.

Proof. — Let φn : n+1
p G̃ → n

p G̃ be the natural surjection. Let g ∈ C and H =

φ−1
n (< g >). We have an exact sequence 1 → kern/kern+1 → H →< g >→ 1.

From the Schur-Zassenhaus lemma, since g is of order prime to p, the sequence splits;

furthermore, the section < g >→ H is unique, up to conjugation.

1.2. Definition of modular towers. — Suppose further given an integer r ≥ 2

and an r-tuple C = (C1, . . . , Cr) of conjugacy classes of G of prime-to-p order. We will

always assume sniG(C) 6= ∅, where the straight Nielsen class sniG(C) is as usual the

set of all r-tuples (g1, . . . , gr) ∈ G
r such that (a) g1 · · · gr = 1, (b) < g1, . . . , gr >= G

and (c) gi ∈ Ci, i = 1, . . . , r. In particular, G is of rank ≤ r and it is p-perfect, i.e.,

it is generated by its elements of prime-to-p order, or, equivalently, G has no Z/pZ

quotient (for example, this excludes p-groups).

Thanks to the lifting lemma, one can define, for each integer n ≥ 0, an r-tuple

Cn = (Cn
1 , . . . , C

n
r ) of conjugacy classes of n

p G̃ such that Cn+1
i is the lifting of Cn

i of

the same order, i = 1, . . . , r . This definition provides, for each n ≥ 0, a map

nin+1
p G̃(Cn+1) −→ nin

p G̃(Cn)

where the Nielsen class niG(C) is defined as sniG(C) above except that condition (c)

should hold only up to some permutation σ ∈ Sr.

Introduce next the associated Hurwitz spaces. For simplicity we restrict to the

G-cover situation, and so to the inner version of Hurwitz spaces; and we omit the

superscript “in” generally used to distinguish this situation from the absolute mere

cover situation. For each n ≥ 0, we have a Hurwitz space

Hn = Hn
p G̃(Cn)

(2)By order of a conjugacy class, we mean the common order of its elements.
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and a natural morphism ψn : Hn+1 → Hn. The collection of spacesHn and morphisms

ψn (n ≥ 0) is called the modular tower associated with the triple (G, p,C).

There is a reduced variant of modular towers, in which the Hurwitz spacesHn
p G̃(Cn)

are replaced by the reduced versions Hn
p G̃(Cn)rd. Recall the difference lies in the

definition of the isomorphisms between covers: two covers φi : Xi → P1 (i = 1, 2)

are equivalent in the reduced situation if there are isomorphisms α : X1 → X2 and

β : P1 → P1 such that φ2 ◦ α = β ◦ φ1 while it is further required that this hold with

β = Id in the original situation. So Hn
p G̃(Cn)rd is the quotient of Hn

p G̃(Cn) by the

action of PSL2(C). See [FK97, appendix II p.173] or [DF99, §6.2] for more details.

Hurwitz spaces Hin
r,G are fine moduli spaces if and only if the group G has trivial

center. In general this center hypothesis does not pass to group extensions. However

that is the case for modular towers.

Theorem 1.2([Fri95a] p.141,[BF02] proposition 3.21). — Let G be a finite group with

trivial center and p be a prime dividing |G| such that G is p-perfect. Then for every

n ≥ 0, the group n
p G̃ has trivial center.

1.3. The dihedral group example. — Modular curves can classically be pre-

sented as quotients of Hurwitz spaces of dihedral covers of P1 branched at 4 points:

Namely take the dihedral group Dpn = Z/pn o Z/2 (n > 0 and p 6= 2 some prime),

r = 4 and all the classes Ci, i = 1, . . . , 4, equal to the involution class C of Gn.

Suppose given a cover f : E → P1 defined and Galois over some field k, of group

Dpn , with 4 branch points and with inertia C. The Riemann-Hurwitz formula yields

the genus g of E: 2g − 2 = 2pn(−2) + 4pn, that is g = 1. The Jacobian Pico(E) has

a k-rational point and so is an elliptic curve over k. Elements of order pn of Dpn are

automorphisms of Pico(E) of order pn defined over k. Thus they are translations by

some pn-torsion point π defined over k. The data (Pico(E), π) classically corresponds

to some point on the modular curve X1(p
n) different from the cusps.

Conversely, let (E, π) be an elliptic curve given with a pn-torsion point, both defined

over k. The cover E → E/< π > is cyclic of degree pn. The curve Eo = E/< π > is an

elliptic curve over k. Composing the above cover with the coverEo → Eo/< −1 >= P1

(where −1 is the canonical involution of E), gives a cover E → P1 defined and Galois

over k, of group Dpn , with 4 branch points and with inertia C.

Using this, for each n > 0, one can construct a surjective morphism defined over Q

χn : Hn = HDpn (Cn)→ X1(p
n)−{cusps}

and we have a commutative diagram

Hn+1
χn+1
−→ X1(p

n+1)

↓ ψn ↓ ×p

Hn
χn
−→ X1(p

n)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006


