VARIATION OF PARABOLIC COHOMOLOGY AND POINCARÉ DUALITY

by

Michael Dettweiler \& Stefan Wewers

Abstract

We continue our study of the variation of parabolic cohomology ([DW]) and derive an exact formula for the underlying Poincaré duality. As an illustration of our methods, we compute the monodromy of the Picard-Euler system and its invariant Hermitian form, reproving a classical theorem of Picard. Résumé (Variation de la cohomologie parabolique et dualité de Poincaré). - On continue l'étude de la variation de la cohomologie parabolique commencée dans [DW]. En particulier, on donne des formules pour l'accouplement de Poincaré sur la cohomologie parabolique, et on calcule la monodromie du système de Picard-Euler, confirmant un résultat classique de Picard.

Introduction

Let x_{1}, \ldots, x_{r} be pairwise distinct points on the Riemann sphere $\mathbb{P}^{1}(\mathbb{C})$ and set $U:=\mathbb{P}^{1}(\mathbb{C})-\left\{x_{1}, \ldots, x_{r}\right\}$. The Riemann-Hilbert correspondence [Del70] is an equivalence between the category of ordinary differential equations with polynomial coefficients and at most regular singularities at the points x_{i} and the category of local systems of \mathbb{C}-vectorspaces on U. The latter are essentially given by an r-tuple of matrices $g_{1}, \ldots, g_{r} \in \mathrm{GL}_{n}(\mathbb{C})$ satisfying the relation $\prod_{i} g_{i}=1$. The Riemann-Hilbert correspondence associates to a differential equation the tuple $\left(g_{i}\right)$, where g_{i} is the monodromy of a full set of solutions at the singular point x_{i}.

In $[\mathbf{D W}]$ the authors investigated the following situation. Suppose that the set of points $\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{P}^{1}(\mathbb{C})$ and a local system \mathcal{V} with singularities at the x_{i} depend on a parameter s which varies over the points of a complex manifold S. More precisely, we consider a relative divisor $D \subset \mathbb{P}_{S}^{1}$ of degree r such that for all $s \in S$ the fibre $D_{s} \subset \mathbb{P}^{1}(\mathbb{C})$ consists of r distinct points. Let $U:=\mathbb{P}_{S}^{1}-D$ denote the complement

[^0]and let \mathcal{V} be a local system on U. We call \mathcal{V} a variation of local systems over the base space S. The parabolic cohomology of the variation \mathcal{V} is the local system on S
$$
\mathcal{W}:=R^{1} \pi_{*}\left(j_{*} \mathcal{V}\right)
$$
where $j: U \hookrightarrow \mathbb{P}_{S}^{1}$ denotes the natural injection and $\pi: \mathbb{P}_{S}^{1} \rightarrow S$ the natural projection. The fibre of \mathcal{W} at a point $s_{0} \in S$ is the parabolic cohomology of the local system \mathcal{V}_{0}, the restriction of \mathcal{V} to the fibre $U_{0}=U \cap \pi^{-1}\left(s_{0}\right)$.

A special case of this construction is the middle convolution functor defined by Katz [Kat97]. Here $S=U_{0}$ and so this functor transforms one local system \mathcal{V}_{0} on S into another one, \mathcal{W}. Katz shows that all rigid local systems on S arise from one-dimensional systems by successive application of middle convolution. This was further investigated by Dettweiler and Reiter [DR03]. Another special case are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada [Ter73] and Deligne-Mostow [DM86]. Here S is the set of ordered tuples of pairwise distinct points on $\mathbb{P}^{1}(\mathbb{C})$ of the form $s=\left(0,1, \infty, x_{4}, \ldots, x_{r}\right)$ and \mathcal{V} is a one-dimensional system on \mathbb{P}_{S}^{1} with regular singularities at the (moving) points $0,1, \infty, x_{4}, \ldots, x_{r}$. In $[\mathbf{D W}]$ we gave another example where S is a 17 -punctured Riemann sphere and the local system \mathcal{V} has finite monodromy. The resulting local system \mathcal{W} on S does not have finite monodromy and is highly non-rigid. Still, by the comparison theorem between singular and étale cohomology, \mathcal{W} gives rise to ℓ-adic Galois representations, with interesting applications to the regular inverse Galois problem.

In all these examples, it is a significant fact that the monodromy of the local system \mathcal{W} (i.e. the action of $\pi_{1}(S)$ on a fibre of \mathcal{W}) can be computed explicitly, i.e. one can write down matrices $g_{1}, \ldots, g_{r} \in \mathrm{GL}_{n}$ which are the images of certain generators $\alpha_{1}, \ldots, \alpha_{r}$ of $\pi_{1}(S)$. In the case of the middle convolution this was discovered by Dettweiler-Reiter [DR00] and Völklein [VÖ1]. In $[\mathbf{D W}]$ it is extended to the more general situation sketched above. In all earlier papers, the computation of the monodromy is either not explicit (like in $[\mathbf{K a t 9 7}]$) or uses ad hoc methods. In contrast, the method presented in $[\mathbf{D W}]$ is very general and can easily be implemented on a computer.

It is one matter to compute the monodromy of \mathcal{W} explicitly (i.e. to compute the matrices g_{i}) and another matter to determine its image (i.e. the group generated by the g_{i}). In many cases the image of monodromy is contained in a proper algebraic subgroup of GL_{n}, because \mathcal{W} carries an invariant bilinear form induced from Poincaré duality. To compute the image of monodromy, it is often helpful to know this form explictly. After a review of the relevant results of $[\mathbf{D W}]$ in Section 1, we give a formula for the Poincaré duality pairing on \mathcal{W} in Section 2. Finally, in Section 3 we illustrate our method in a very classical example: the Picard-Euler system.

1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and $D \subset X$ a subset of cardinality $r \geq 3$. We set $U:=X-D$. There exists a homeomorphism $\kappa: X \xrightarrow{\sim}$ $\mathbb{P}^{1}(\mathbb{C})$ between X and the Riemann sphere which maps the set D to the real line $\mathbb{P}^{1}(\mathbb{R}) \subset \mathbb{P}^{1}(\mathbb{C})$. Such a homeomorphism is called a marking of (X, D).

Having chosen a marking κ, we may assume that $X=\mathbb{P}^{1}(\mathbb{C})$ and $D \subset \mathbb{P}^{1}(\mathbb{R})$. Choose a base point $x_{0} \in U$ lying in the upper half plane. Write $D=\left\{x_{1}, \ldots, x_{r}\right\}$ with $x_{1}<x_{2}<\cdots<x_{r} \leq \infty$. For $i=1, \ldots, r-1$ we let γ_{i} denote the open interval $\left(x_{i}, x_{i+1}\right) \subset U \cap \mathbb{P}^{1}(\mathbb{R})$; for $i=r$ we set $\gamma_{0}=\gamma_{r}:=\left(x_{r}, x_{1}\right)$ (which may include ∞). For $i=1, \ldots, r$, we let $\alpha_{i} \in \pi_{1}(U)$ be the element represented by a closed loop based at x_{0} which first intersects γ_{i-1} and then γ_{i}. We obtain the following well known presentation

$$
\begin{equation*}
\pi_{1}\left(U, x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{r} \mid \prod_{i} \alpha_{i}=1\right\rangle \tag{1}
\end{equation*}
$$

which only depends on the marking κ.
Let R be a (commutative) ring. A local system of R-modules on U is a locally constant sheaf \mathcal{V} on U with values in the category of free R-modules of finite rank. Such a local system corresponds to a representation $\rho: \pi_{1}\left(U, x_{0}\right) \rightarrow \mathrm{GL}(V)$, where $V:=\mathcal{V}_{x_{0}}$ is the stalk of \mathcal{V} at x_{0} (note that V is a free R-module of finite rank). For $i=1, \ldots, r$, set $g_{i}:=\rho\left(\alpha_{i}\right) \in \mathrm{GL}(V)$. Then we have

$$
\prod_{i=1}^{r} g_{i}=1
$$

and \mathcal{V} can also be given by a tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \in \mathrm{GL}(V)^{r}$ satisfying the above product-one-relation.

Convention 1.1. - Let α, β be two elements of $\pi_{1}\left(U, x_{0}\right)$, represented by closed path based at x_{0}. The composition $\alpha \beta$ is (the homotopy class of) the closed path obtained by first walking along α and then along β. Moreover, we let GL (V) act on V from the right.
1.2. Fix a local system of R-modules \mathcal{V} on U as above. Let $j: U \hookrightarrow X$ denote the inclusion. The parabolic cohomology of \mathcal{V} is defined as the sheaf cohomology of $j_{*} \mathcal{V}$, and is written as $H_{p}^{n}(U, \mathcal{V}):=H^{n}\left(X, j_{*} \mathcal{V}\right)$. We have natural morphisms $H_{c}^{n}(U, \mathcal{V}) \rightarrow H_{p}^{n}(U, \mathcal{V})$ and $H_{p}^{n}(U, \mathcal{V}) \rightarrow H^{n}(U, \mathcal{V})\left(H_{c}\right.$ denotes cohomology with compact support). Moreover, the group $H^{n}(U, \mathcal{V})$ is canonically isomorphic to the group cohomology $H^{n}\left(\pi_{1}\left(U, x_{0}\right), V\right)$ and $H_{p}^{1}(U, \mathcal{V})$ is the image of the cohomology with compact support in $H^{1}(U, \mathcal{V})$, see [DW, Prop. 1.1]. Thus, there is a natural inclusion

$$
H_{p}^{1}(U, \mathcal{V}) \hookrightarrow H^{1}\left(\pi_{1}\left(U, x_{0}\right), V\right)
$$

Let $\delta: \pi_{1}(U) \rightarrow V$ be a cocycle, i.e. we have $\delta(\alpha \beta)=\delta(\alpha) \cdot \rho(\beta)+\delta(\beta)$ (see Convention 1.1). Set $v_{i}:=\delta\left(\alpha_{i}\right)$. It is clear that the tuple $\left(v_{i}\right)$ is subject to the relation

$$
\begin{equation*}
v_{1} \cdot g_{2} \cdots g_{r}+v_{2} \cdot g_{3} \cdots g_{r}+\cdots+v_{r}=0 \tag{2}
\end{equation*}
$$

By definition, δ gives rise to an element in $H^{1}\left(\pi_{1}\left(U, x_{0}\right), V\right)$. We say that δ is a parabolic cocycle if the class of δ in $H^{1}\left(\pi_{1}(U), V\right)$ lies in $H_{p}^{1}(U, \mathcal{V})$. By [DW, Lemma 1.2], the cocycle δ is parabolic if and only if v_{i} lies in the image of $g_{i}-1$, for all i. Thus, the assignment $\delta \mapsto\left(\delta\left(\alpha_{1}\right), \ldots, \delta\left(\alpha_{r}\right)\right)$ yields an isomorphism

$$
\begin{equation*}
H_{p}^{1}(U, \mathcal{V}) \cong W_{\mathbf{g}}:=H_{\mathbf{g}} / E_{\mathbf{g}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\mathbf{g}}:=\left\{\left(v_{1}, \ldots, v_{r}\right) \mid v_{i} \in \operatorname{Im}\left(g_{i}-1\right), \text { relation (2) holds }\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\mathbf{g}}:=\left\{\left(v \cdot\left(g_{1}-1\right), \ldots, v \cdot\left(g_{r}-1\right)\right) \mid v \in V\right\} \tag{5}
\end{equation*}
$$

1.3. Let S be a connected complex manifold, and $r \geq 3$. An r-configuration over S consists of a smooth and proper morphism $\bar{\pi}: X \rightarrow S$ of complex manifolds together with a smooth relative divisor $D \subset X$ such that the following holds. For all $s \in S$ the fiber $X_{s}:=\bar{\pi}^{-1}(s)$ is a compact Riemann surface of genus 0 . Moreover, the natural map $D \rightarrow S$ is an unramified covering of degree r. Then for all $s \in S$ the divisor $D \cap X_{s}$ consists of r pairwise distinct points $x_{1}, \ldots, x_{r} \in X_{s}$.

Let us fix an r-configuration (X, D) over S. We set $U:=X-D$ and denote by $j: U \hookrightarrow X$ the natural inclusion. Also, we write $\pi: U \rightarrow S$ for the natural projection. Choose a base point $s_{0} \in S$ and set $X_{0}:=\bar{\pi}^{-1}\left(s_{0}\right)$ and $D_{0}:=X_{0} \cap D$. Set $U_{0}:=X_{0}-D_{0}=\pi^{-1}\left(s_{0}\right)$ and choose a base point $x_{0} \in U_{0}$. The projection $\pi: U \rightarrow S$ is a topological fibration and yields a short exact sequence

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(U_{0}, x_{0}\right) \longrightarrow \pi_{1}\left(U, x_{0}\right) \longrightarrow \pi_{1}\left(S, s_{0}\right) \longrightarrow 1 \tag{6}
\end{equation*}
$$

Let \mathcal{V}_{0} be a local system of R-modules on U_{0}. A variation of \mathcal{V}_{0} over S is a local system \mathcal{V} of R-modules on U whose restriction to U_{0} is identified with \mathcal{V}_{0}. The parabolic cohomology of a variation \mathcal{V} is the higher direct image sheaf

$$
\mathcal{W}:=R^{1} \bar{\pi}_{*}\left(j_{*} \mathcal{V}\right)
$$

By construction, \mathcal{W} is a local system with fibre

$$
W:=H_{p}^{1}\left(U_{0}, \mathcal{V}_{0}\right)
$$

(Since an r-configuration is locally trivial relative to S, it follows that the formation of \mathcal{W} commutes with arbitrary basechange $S^{\prime} \rightarrow S$.) Thus \mathcal{W} corresponds to a representation $\eta: \pi_{1}\left(S, s_{0}\right) \rightarrow \mathrm{GL}(W)$. We call ρ the monodromy representation on the parabolic cohomology of \mathcal{V}_{0} (with respect to the variation \mathcal{V}).
1.4. Under a mild assumption, the monodromy representation η has a very explicit description in terms of the Artin braid group. We first have to introduce some more notation. Define

$$
\mathcal{O}_{r-1}:=\left\{D^{\prime} \subset \mathbb{C}| | D^{\prime} \mid=r-1\right\}=\left\{D \subset \mathbb{P}^{1}(\mathbb{C})| | D \mid=r, \infty \in D\right\}
$$

The fundamental group $A_{r-1}:=\pi_{1}\left(\mathcal{O}_{r-1}, D_{0}\right)$ is the Artin braid group on $r-1$ strands. Let $\beta_{1}, \ldots, \beta_{r-2}$ be the standard generators, see e.g. [DW, § 2.2.] (The element β_{i} switches the position of the two points x_{i} and x_{i+1}; the point x_{i} walks through the lower half plane and x_{i+1} through the upper half plane.) The generators β_{i} satisfy the following well known relations:

$$
\begin{equation*}
\beta_{i} \beta_{i+1} \beta_{i}=\beta_{i+1} \beta_{i} \beta_{i+1}, \quad \beta_{i} \beta_{j}=\beta_{j} \beta_{i} \quad(\text { for }|i-j|>1) \tag{7}
\end{equation*}
$$

Let R be a commutative ring and V a free R-module of finite rank. Set

$$
\mathcal{E}_{r}(V):=\left\{\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \mid g_{i} \in \operatorname{GL}(V), \prod_{i} g_{i}=1\right\}
$$

We define a right action of the Artin braid group A_{r-1} on the set $\mathcal{E}_{r}(V)$ by the following formula:

$$
\begin{equation*}
\mathbf{g}^{\beta_{i}}:=\left(g_{1}, \ldots, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, \ldots, g_{r}\right) \tag{8}
\end{equation*}
$$

One easily checks that this definition is compatible with the relations (7). For $\mathbf{g} \in$ $\mathcal{E}_{r}(V)$, let $H_{\mathbf{g}}$ be as in (4). For all $\beta \in A_{r-1}$, we define an R-linear isomorphism

$$
\Phi(\mathbf{g}, \beta): H_{\mathbf{g}} \xrightarrow{\sim} H_{\mathbf{g}^{\beta}}
$$

as follows. For the generators β_{i} we set
(9) $\quad\left(v_{1}, \ldots, v_{r}\right)^{\Phi\left(\mathbf{g}, \beta_{i}\right)}:=(v_{1}, \ldots, v_{i+1}, \underbrace{v_{i+1}\left(1-g_{i+1}^{-1} g_{i} g_{i+1}\right)+v_{i} g_{i+1}}_{(i+1) \text { th entry }}, \ldots, v_{r})$.

For an arbitrary word β in the generators β_{i}, we define $\Phi(\mathbf{g}, \beta)$ using (9) and the 'cocycle rule'

$$
\begin{equation*}
\Phi(\mathbf{g}, \beta) \cdot \Phi\left(\mathbf{g}^{\beta}, \beta^{\prime}\right)=\Phi\left(\mathbf{g}, \beta \beta^{\prime}\right) \tag{10}
\end{equation*}
$$

(Our convention is to let linear maps act from the right; therefore, the left hand side of (9) is the linear map obtained from first applying $\Phi(\mathbf{g}, \beta)$ and then $\Phi\left(\mathbf{g}^{\beta}, \beta^{\prime}\right)$.) It is easy to see that $\Phi(\mathbf{g}, \beta)$ is well defined and respects the submodule $E_{\mathbf{g}} \subset H_{\mathbf{g}}$ defined by (5). Let

$$
\bar{\Phi}(\mathbf{g}, \beta): W_{\mathbf{g}} \xrightarrow{\sim} W_{\mathbf{g}^{\beta}}
$$

denote the induced map on the quotient $W_{\mathbf{g}}=H_{\mathbf{g}} / E_{\mathbf{g}}$.
Given $\mathbf{g} \in \mathcal{E}_{r}(V)$ and $h \in \operatorname{GL}(V)$, we define the isomorphism

$$
\Psi(\mathbf{g}, h):\left\{\begin{array}{ccc}
H_{\mathbf{g}^{h}} & \stackrel{\sim}{\longrightarrow} & H_{\mathbf{g}} \\
\left(v_{1}, \ldots, v_{r}\right) & \longmapsto & \left(v_{1} \cdot h, \ldots, v_{r} \cdot h\right) .
\end{array}\right.
$$

[^0]: 2000 Mathematics Subject Classification. - 14F05.
 Key words and phrases. - Parabolic cohomology, Poincaré duality, Riemann-Hilbert correspondence.

