
Séminaires & Congrès

13, 2006, p. 145–164

VARIATION OF PARABOLIC COHOMOLOGY AND

POINCARÉ DUALITY

by

Michael Dettweiler & Stefan Wewers

Abstract. — We continue our study of the variation of parabolic cohomology ([DW])
and derive an exact formula for the underlying Poincaré duality. As an illustration
of our methods, we compute the monodromy of the Picard-Euler system and its
invariant Hermitian form, reproving a classical theorem of Picard.

Résumé(Variation de la cohomologie parabolique et dualité de Poincaré). — On continue
l’étude de la variation de la cohomologie parabolique commencée dans [DW]. En
particulier, on donne des formules pour l’accouplement de Poincaré sur la cohomologie
parabolique, et on calcule la monodromie du système de Picard-Euler, confirmant un
résultat classique de Picard.

Introduction

Let x1, . . . , xr be pairwise distinct points on the Riemann sphere P1(C) and

set U := P1(C) − {x1, . . . , xr}. The Riemann–Hilbert correspondence [Del70]

is an equivalence between the category of ordinary differential equations with

polynomial coefficients and at most regular singularities at the points xi and the

category of local systems of C-vectorspaces on U . The latter are essentially given

by an r-tuple of matrices g1, . . . , gr ∈ GLn(C) satisfying the relation
∏

i gi = 1.

The Riemann–Hilbert correspondence associates to a differential equation the

tuple (gi), where gi is the monodromy of a full set of solutions at the singular

point xi.

In [DW] the authors investigated the following situation. Suppose that the set of

points {x1, . . . , xr} ⊂ P1(C) and a local system V with singularities at the xi depend

on a parameter s which varies over the points of a complex manifold S. More precisely,

we consider a relative divisor D ⊂ P1
S of degree r such that for all s ∈ S the fibre

Ds ⊂ P1(C) consists of r distinct points. Let U := P1
S −D denote the complement
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and let V be a local system on U . We call V a variation of local systems over the base

space S. The parabolic cohomology of the variation V is the local system on S

W := R1π∗(j∗V),

where j : U ↪→ P1
S denotes the natural injection and π : P1

S → S the natural pro-

jection. The fibre of W at a point s0 ∈ S is the parabolic cohomology of the local

system V0, the restriction of V to the fibre U0 = U ∩ π−1(s0).

A special case of this construction is the middle convolution functor defined by

Katz [Kat97]. Here S = U0 and so this functor transforms one local system V0

on S into another one, W . Katz shows that all rigid local systems on S arise

from one-dimensional systems by successive application of middle convolution. This

was further investigated by Dettweiler and Reiter [DR03]. Another special case

are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada

[Ter73] and Deligne–Mostow [DM86]. Here S is the set of ordered tuples of

pairwise distinct points on P1(C) of the form s = (0, 1,∞, x4, . . . , xr) and V is a

one-dimensional system on P1
S with regular singularities at the (moving) points

0, 1,∞, x4, . . . , xr. In [DW] we gave another example where S is a 17-punctured

Riemann sphere and the local system V has finite monodromy. The resulting local

system W on S does not have finite monodromy and is highly non-rigid. Still, by the

comparison theorem between singular and étale cohomology, W gives rise to `-adic

Galois representations, with interesting applications to the regular inverse Galois

problem.

In all these examples, it is a significant fact that the monodromy of the local sys-

tem W (i.e. the action of π1(S) on a fibre of W) can be computed explicitly, i.e. one

can write down matrices g1, . . . , gr ∈ GLn which are the images of certain generators

α1, . . . , αr of π1(S). In the case of the middle convolution this was discovered by

Dettweiler–Reiter [DR00] and Völklein [V0̈1]. In [DW] it is extended to the more

general situation sketched above. In all earlier papers, the computation of the mon-

odromy is either not explicit (like in [Kat97]) or uses ad hoc methods. In contrast,

the method presented in [DW] is very general and can easily be implemented on a

computer.

It is one matter to compute the monodromy of W explicitly (i.e. to compute the

matrices gi) and another matter to determine its image (i.e. the group generated

by the gi). In many cases the image of monodromy is contained in a proper alge-

braic subgroup of GLn, because W carries an invariant bilinear form induced from

Poincaré duality. To compute the image of monodromy, it is often helpful to know

this form explictly. After a review of the relevant results of [DW] in Section 1,

we give a formula for the Poincaré duality pairing on W in Section 2. Finally, in

Section 3 we illustrate our method in a very classical example: the Picard–Euler

system.
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1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and D ⊂ X a subset of

cardinality r ≥ 3. We set U := X − D. There exists a homeomorphism κ : X
∼
→

P1(C) between X and the Riemann sphere which maps the set D to the real line

P1(R) ⊂ P1(C). Such a homeomorphism is called a marking of (X,D).

Having chosen a marking κ, we may assume that X = P1(C) and D ⊂ P1(R).

Choose a base point x0 ∈ U lying in the upper half plane. Write D = {x1, . . . , xr}

with x1 < x2 < · · · < xr ≤ ∞. For i = 1, . . . , r − 1 we let γi denote the open interval

(xi, xi+1) ⊂ U ∩ P1(R); for i = r we set γ0 = γr := (xr, x1) (which may include ∞).

For i = 1, . . . , r, we let αi ∈ π1(U) be the element represented by a closed loop based

at x0 which first intersects γi−1 and then γi. We obtain the following well known

presentation

(1) π1(U, x0) =
〈

α1, . . . , αr |
∏

i

αi = 1
〉

,

which only depends on the marking κ.

Let R be a (commutative) ring. A local system of R-modules on U is a locally

constant sheaf V on U with values in the category of free R-modules of finite rank.

Such a local system corresponds to a representation ρ : π1(U, x0) → GL(V ), where

V := Vx0 is the stalk of V at x0 (note that V is a free R-module of finite rank). For

i = 1, . . . , r, set gi := ρ(αi) ∈ GL(V ). Then we have

r∏

i=1

gi = 1,

and V can also be given by a tuple g = (g1, . . . , gr) ∈ GL(V )r satisfying the above

product-one-relation.

Convention 1.1. — Let α, β be two elements of π1(U, x0), represented by closed path

based at x0. The composition αβ is (the homotopy class of) the closed path obtained

by first walking along α and then along β. Moreover, we let GL(V ) act on V from

the right.

1.2. Fix a local system of R-modules V on U as above. Let j : U ↪→ X denote

the inclusion. The parabolic cohomology of V is defined as the sheaf cohomology

of j∗V , and is written as Hn
p (U,V) := Hn(X, j∗V). We have natural morphisms

Hn
c (U,V) → Hn

p (U,V) and Hn
p (U,V) → Hn(U,V) (Hc denotes cohomology with

compact support). Moreover, the group Hn(U,V) is canonically isomorphic to the

group cohomology Hn(π1(U, x0), V ) and H1
p (U,V) is the image of the cohomology

with compact support in H1(U,V), see [DW, Prop. 1.1]. Thus, there is a natural

inclusion

H1
p (U,V) ↪→ H1(π1(U, x0), V ).
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Let δ : π1(U) → V be a cocycle, i.e. we have δ(αβ) = δ(α) · ρ(β) + δ(β) (see

Convention 1.1). Set vi := δ(αi). It is clear that the tuple (vi) is subject to the

relation

(2) v1 · g2 · · · gr + v2 · g3 · · · gr + · · · + vr = 0.

By definition, δ gives rise to an element in H1(π1(U, x0), V ). We say that δ is a

parabolic cocycle if the class of δ in H1(π1(U), V ) lies in H1
p (U,V). By [DW, Lemma

1.2], the cocycle δ is parabolic if and only if vi lies in the image of gi − 1, for all i.

Thus, the assignment δ 7→ (δ(α1), . . . , δ(αr)) yields an isomorphism

(3) H1
p (U,V) ∼= Wg := Hg/Eg,

where

(4) Hg := { (v1, . . . , vr) | vi ∈ Im(gi − 1), relation (2) holds}

and

(5) Eg := { ( v · (g1 − 1), . . . , v · (gr − 1) ) | v ∈ V }.

1.3. Let S be a connected complex manifold, and r ≥ 3. An r-configuration over S

consists of a smooth and proper morphism π̄ : X → S of complex manifolds together

with a smooth relative divisor D ⊂ X such that the following holds. For all s ∈ S the

fiber Xs := π̄−1(s) is a compact Riemann surface of genus 0. Moreover, the natural

map D → S is an unramified covering of degree r. Then for all s ∈ S the divisor

D ∩Xs consists of r pairwise distinct points x1, . . . , xr ∈ Xs.

Let us fix an r-configuration (X,D) over S. We set U := X − D and denote

by j : U ↪→ X the natural inclusion. Also, we write π : U → S for the natural

projection. Choose a base point s0 ∈ S and set X0 := π̄−1(s0) and D0 := X0∩D. Set

U0 := X0−D0 = π−1(s0) and choose a base point x0 ∈ U0. The projection π : U → S

is a topological fibration and yields a short exact sequence

(6) 1 −→ π1(U0, x0) −→ π1(U, x0) −→ π1(S, s0) −→ 1.

Let V0 be a local system of R-modules on U0. A variation of V0 over S is a

local system V of R-modules on U whose restriction to U0 is identified with V0. The

parabolic cohomology of a variation V is the higher direct image sheaf

W := R1π̄∗(j∗V).

By construction, W is a local system with fibre

W := H1
p (U0,V0).

(Since an r-configuration is locally trivial relative to S, it follows that the formation

of W commutes with arbitrary basechange S′ → S.) Thus W corresponds to a

representation η : π1(S, s0) → GL(W ). We call ρ the monodromy representation on

the parabolic cohomology of V0 (with respect to the variation V).
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1.4. Under a mild assumption, the monodromy representation η has a very explicit

description in terms of the Artin braid group. We first have to introduce some more

notation. Define

Or−1 := {D′ ⊂ C | |D′| = r − 1 } = {D ⊂ P1(C) | |D| = r, ∞ ∈ D }.

The fundamental group Ar−1 := π1(Or−1, D0) is the Artin braid group on r − 1

strands. Let β1, . . . , βr−2 be the standard generators, see e.g. [DW, § 2.2.] (The

element βi switches the position of the two points xi and xi+1; the point xi walks

through the lower half plane and xi+1 through the upper half plane.) The generators

βi satisfy the following well known relations:

(7) βiβi+1βi = βi+1βiβi+1, βiβj = βjβi (for |i− j| > 1).

Let R be a commutative ring and V a free R-module of finite rank. Set

Er(V ) := { g = (g1, . . . , gr) | gi ∈ GL(V ),
∏

i

gi = 1 }.

We define a right action of the Artin braid group Ar−1 on the set Er(V ) by the

following formula:

(8) gβi := (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr).

One easily checks that this definition is compatible with the relations (7). For g ∈

Er(V ), let Hg be as in (4). For all β ∈ Ar−1, we define an R-linear isomorphism

Φ(g, β) : Hg
∼
−→ Hgβ ,

as follows. For the generators βi we set

(9) (v1, . . . , vr)
Φ(g,βi) := (v1, . . . , vi+1, vi+1(1 − g−1

i+1gigi+1) + vigi+1
︸ ︷︷ ︸

(i + 1)th entry

, . . . , vr).

For an arbitrary word β in the generators βi, we define Φ(g, β) using (9) and the

‘cocycle rule’

(10) Φ(g, β) · Φ(gβ , β′) = Φ(g, ββ′).

(Our convention is to let linear maps act from the right; therefore, the left hand side

of (9) is the linear map obtained from first applying Φ(g, β) and then Φ(gβ , β′).) It is

easy to see that Φ(g, β) is well defined and respects the submodule Eg ⊂ Hg defined

by (5). Let

Φ̄(g, β) : Wg
∼
−→ Wgβ

denote the induced map on the quotient Wg = Hg/Eg.

Given g ∈ Er(V ) and h ∈ GL(V ), we define the isomorphism

Ψ(g, h) :







Hgh

∼
−→ Hg

(v1, . . . , vr) 7−→ (v1 · h, . . . , vr · h).
,
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