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Abstract — The genus of projective curves discretely separates decidedly different
two variable algebraic relations. So, we can focus on the connected moduli My of
genus g curves. Yet, modern applications require a data variable (function) on such
curves. The resulting spaces are versions, depending on our need from this data
variable, of Hurwitz spaces. A Nielsen class (§1) is a set defined by r > 3 conjugacy
classes C in the data variable monodromy G. It gives a striking genus analog.

Using Frattini covers of G, every Nielsen class produces a projective system of
related Nielsen classes for any prime p dividing |G|. A nonempty (infinite) projective
system of braid orbits in these Nielsen classes is an infinite (G, C) component (tree)
branch. These correspond to projective systems of irreducible (dim r — 3) compo-
nents from {H(Gp x(G), C)}22,, the (G, C,p) Modular Tower (MT). The classical
modular curve towers {Y1(p*t1)}¢° | (simplest case: G is dihedral, r = 4, C are
involution classes) are an avatar.

The (weak) Main Conjecture 1.2 says, if G is p-perfect, there are no rational points
at high levels of a component branch. When r = 4, MTs (minus their cusps) are
systems of upper half plane quotients covering the j-line. Our topics.

— §3 and §4: Identifying component branches on a MT from g-p’, p and Weigel
cusp branches using the M'T generalization of spin structures.

— §5: Listing cusp branch properties that imply the (weak) Main Conjecture
and extracting the small list of towers that could possibly fail the conjecture.

— §6: Formulating a (strong) Main Conjecture for higher rank MTs (with ex-
amples): almost all primes produce a modular curve-like system.
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RésuméLa conjecture principale sur les tours modulaires et sa gééralisation en rang supé-
rieur)

Le genre des courbes projectives est un invariant discret qui permet une premiere
classification des relations algébriques en deux variables. On peut ainsi se concentrer
sur les espaces de modules connexes My des courbes de genre g donné. Pourtant
de nombreux problémes nécessitent la donnée supplémentaire d’une fonction sur la
courbe. Les espaces de modules correspondants sont les espaces de Hurwitz, dont il
existe plusieurs variantes, répondant & des besoins divers. Une classe de Nielsen (§1)
est un ensemble, constitué a partir d’un groupe G et d’un ensemble C de r > 3 classes
de conjugaison de G, qui décrit la monodromie de la fonction. C’est un analogue
frappant du genre.

En utilisant les revétements de Frattini de G, chaque classe de Nielsen fournit
un systeéme projectif de classes de Nielsen dérivées, pour tout premier p divisant
|G|. Un systéme projectif non vide (infini) d’orbites d’actions de tresses dans ces
classes de Nielsen est une branche infinie d’un arbre de composantes. Cela corres-
pond & un systéme projectif de composantes irréductibles (de dimension r — 3) de
{H(Gp,k(G),C)}$2 5, la tour modulaire. La tour classique des courbes modulaires
{Y1(p"*+1)}22, (le cas le plus simple olt G est le groupe diédral Doy, r = 4 et C la
classe d’involution répétée 4 fois) en est un avatar.

La conjecture principale (faible) dit que, si G est p-parfait, il n’y a pas de points
rationnels au dela d’un niveau suffisamment élevé d’une branche de composantes.
Quand r = 4, les tours modulaires (privées des pointes) sont des systémes de quotients
du demi-plan supérieur au-dessus de la droite projective de parametre j. Nos thémes.

— 83 et 84 : Identification des branches de composantes sur une tour modulaire &
partir des branches de pointes g — p’, p et Weigel, grace & la généralisation des
structures de spin.

- 85 Enoncé d’un ensemble de propriétés des branches de pointes impliquant la
conjecture principale (faible) et réduction & un nombre limité de cas de tours
pouvant encore éventuellement la mettre en défaut.

— 86 : Formulation d’une conjecture principale forte pour des tours modulaires de
rang supérieur (avec des exemples) : presque tous les premiers conduisent & un
systeme semblable & celui des courbes modulaires.
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Luminy in March 2004 gave me a chance to show the growing maturity of Modular
Towers (MTs). Documenting its advances, however, uses two other sources: Papers
from this conference; and a small selection from the author’s work. §C.1 lists the
former. While the first two papers in that list have their own agendas, they show
the influence of MTs. The last two papers aim, respectively, at the arithmetic and
group theory of MTs. This paper concentrates on (cusp) geometry. As [Fri07] is
not yet complete, I've listed typos corrected from the print version of [BF02] —our
basic reference —in the on-line version (§C.2). From it came the serious examples
(see partial list of §6.2.3) that graphically demonstrate the theory.

A glance at the Table of Contents shows §4 is the longest and most theoretical in
the paper. It will figure in planned later papers. We have done our best in §6 to get
serious examples to illustrate everything in §4. (Constraints include assuring we had
in print enough on the examples to have them work as we wanted.) So, we suggest
referring to §4 after finding motivation from other sections.
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Many items in this paper would seem to complicate looking at levels of a MT: types
of cusps, Schur multipliers of varying groups, component orbits. It behooves us to
have an organizing tool to focus, label and display crucial and difficult computations.
Further, we find that arithmetic geometers with little group theory background just
don’t know where to start. What surely helps handle some of these problems is the sh-
incidence matrix. I suggested to Kay Maagard that the braid package (for computing
Nielsen class orbits) would gain greatly if it had a sub-routine for this. He said he
would soon put such in [MSVO03].

We use the sh-incidence Matrix on Ni(A4, C132)™ in §6.4.2 to show what we
mean. More elaborate examples for level 1 of this MT and also for Ni(As, Cgs)™*d
are in [BF02, Chaps. 8 and 9]. All these are done without [Sch95] or other computer
calculation, and they figure in many places in this paper as nontrivial examples of
the mathematical arguments that describe the structure of MIT levels. Still, [BF02,
§9.2.1 and 9.2.2] list what [Sch95] produced for all branch cycles (see §5.2.2 and
§6.2.3) for both (j-line covering) components at level 1 in the (A5, C34,p = 2) MT.

1. Questions and topics

In this paper the branch point parameter r > 3 is usually 4 (or 3). Results (based
on §3 and §4) on MTs with r arbitrary are in a companion paper [FriO6a] that
contains proofs of several results from the author’s long-ago preprints. For example: It
describes all components of Hurwitz spaces attached to (4,, Cs-), alternating groups
with 3-cycle branch cycles running over alln > 3, r > n — 1.

1.1. The case for investigating MTs. — A group G and r conjugacy classes
C =0Cy,...,C, from G define a Nielsen class (§2.4.1). The Hurwitz monodromy group
H, acts on (we say braids) elements in representing Nielsen classes. Components of
MT levels correspond to H, orbits. Other geometry, especially related to cusps,
corresponds to statements about subgroups of H, on Nielsen classes.

Sometimes we use the notation rc for the number r of conjugacy classes.
Mostly, however, we concentrate on MTs defined by reduced (inner) Nielsen classes
Ni(G, C) where rc = 4 (sometimes one conjugacy class, repeated four times).
Then, the sequence of reduced inner Hurwitz spaces ({H(Gp,(G), C)™}2 | below)
defining their levels are curves. Here Hy, acting on a corresponding projective
sequence of Nielsen classes, factors through a mapping class group we denote as Mjy.
It is naturally isomorphic to PSLa(Z).

In this case, a projective sequence of finite index subgroups of PSLy(Z) acting on
the upper half-plane, indexed by powers of a prime p, do correspond to these levels.
Yet, this sequence appears indirectly in MTs, unlike the classical approach to the
special case of modular curve sequences. The closure H(G,, x(G), C)™* is a ramified
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cover of the j-line (§2.3) that includes cusps (lying over j = co). Each cusp identifies
with a Nielsen class cusp set (as in (2.5a)).

Like modular curves towers, the usual cusp type is a p cusp. Also, like modular
curve towers, special cusp sets correspond to actual cusps with special geometric
properties. The technical theme of this paper: MTs with g-p’ cusps (§3.2.1) have a
special kinship to modular curves (a subcase). That is because g-p’ cusps potentially
generalize a classical meaning for those modular curve cusps akin to representing
degenerating Tate elliptic curves. This relates to the topic of tangential base points
(Princ. 4.10 and §6.2). The other kind of cusp type called o-p’ has no modular curve
analog. We give many examples of these occurring on MTs where p = 2 and Gy is
an alternating group.

Direct interpretation of cusps and other geometric properties of MT levels com-
pensates for how they appear indirectly as upper half-plane quotients. This allows
defining MTs for r > 4. These have many applications, and an indirect relation with
Siegel upper half-spaces, though no direct analog with modular curves.

1.1.1. Why investigate MTs?— We express MTs as a response to these topics.

T;. They answer to commonly arising questions:
T7.a. Why has it taken so long to solve the Inverse Galois Problem?
Ti1.b. How does the Inverse Galois Problem relate to other deep or important
problems?
T5. Progress on MTs generates new applications:
Ts.a. Proving the Main Conjecture shows MTs have some properties anal-
ogous to those for modular curves.
Ts.b. Specific MT levels have many recognizable applications.

Here is the answer to Tj.a. in a nutshell. MTs shows a significant part of the
Inverse Galois Problem includes precise generalizations of many renown statements
from modular curves. Like those statements, MT results say you can’t find very
many of certain specific structures over Q.

For example, §6.1.2 cites [Cad05b] to say the weak (but not the strong) Main
Conjecture of MTs follows from the Strong Torsion Conjecture (STC) on abelian
varieties. Still, there is more to say: Progress on our Main Conjecture implies specific
insight and results on the STC (subtle distinctions on the type of torsion points in
question), and relations of it to the Inverse Galois Problem.

1.1.2. Frattini extensions of a finite group G lie behind MTs. — Use the notation
Z/n for congruences mod n and Z, for the p-adic integers. Denote the profinite
completion of Z by Z and its automorphisms (invertible profinite integers) by Z*.
Suppose p is a prime dividing |G|. Group theorists interpret p’ as an adjective
applying to sets related to G: A set is p’ if p does not divide orders of its elements.
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