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PROPERTIES OF LAMÉ OPERATORS WITH FINITE

MONODROMY
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Răzvan Liţcanu & Leonardo Zapponi

Abstract. — This survey paper contains recent developments in the study of Lamé
operators having finite monodromy group. We present the approach based on the
pull-back theory of Klein, that allowed the description of the projective monodromy
groups by Baldassarri ([Bal81]), as well as the connection with Grothendieck’s the-
ory of dessins d’enfants, that leads to explicit properties and formulae. The results of
Beukers and van der Waall ([BvdW04]) concerning the full monodromy group are
also presented. The last section describes the Lamé operators L1 with finite mon-
odromy in terms of the values of the Weierstraß zeta function corresponding to the
elliptic curve associated to L1, as well as the connection with the modular forms.

Résumé(Propriétés des opérateurs de Lamé à monodromie finie). —Cet article présente
quelques développements récents dans l’étude des opérateurs de Lamé à monodromie
finie. On décrit l’approche basée sur la théorie des pull-back développée par Klein
et utilisée par Baldassarri ([Bal81]) pour décrire la monodromie projective. On fait
ensuite le lien avec la théorie des dessins d’enfants de Grothendieck, qui amène à
des descriptions et à des formules explicites. On revient également sur les résultats
de Beukers and van der Waall ([BvdW04]) concernant la monodromie. La dernière
partie est consacrée à l’étude des opérateurs de Lamé L1 avec monodromie finie
en termes des valeurs de la fonction zéta de Weierstraß correspondant à la courbe
elliptique attachée à L1 et au lien avec les formes modulaires.

1. Introduction

Let C be an algebraic curve defined over C (smooth, projective and geometrically

connected), or, equivalently a compact Riemann surface. We denote K = K(C) the

function field of C.
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Let D be a nontrivial derivation on K over C and

(1.1) L = Dm + p1D
m−1 + · · · + pm−1D + pm

be a linear differential operator of order m on C, where pi ∈ K for i ∈ {1, . . . , m}. If

P ∈ C corresponds to the valuation vP of K and t is a local parameter at P , then

locally

(1.2) L = q

(

dm

dtm
+ p′1

dm−1

dtm−1
+ · · · + p′m−1

d

dt
+ p′m

)

where q, p′i ∈ K, i ∈ {1, . . . , m}. The point P is a regular point for L if vP (p′i) ≥ 0

for all i ∈ {1, . . . , m} and a singular point otherwise. Obviously the set S of singular

points of L is finite, let S = {P1, P2, . . . , Pr}. If vP (p′i) ≥ −i then the singular point

P is called regular. At each regular point L has n independent solutions which are

holomorphic. We shall suppose that all the singular points of the operators we are

dealing with in this paper are regular and, moreover, if P is a regular singular point

of an operator L as in (1.1) then L has m independent solutions at P of the form

(1.3) ui = tαi(c0 + c1t + . . . )

i = 0, . . . , m, with αi ∈ Q. The rational numbers αi are called the exponents of L at

P and they are the roots of a polynomial equation of degree m, the indicial equation.

Under these assumptions, if all the exponents are distinct, but differ only by integers,

then every solution y(t) is either holomorphic, or can be made so locally around P

after a transformation y = tρy∗ (see Poole [Poo60]).

If P ∈ C \ S, analytic continuation of the functions in a basis of solutions in P

yields to the monodromy representation

(1.4) π1(C \ S) → GL(m, C)

For various points P and different basis of solutions, these representations are conju-

gated to each other. The image is called the monodromy group of the operator L. It

is a subgroup of GL(m, C), well-defined up to conjugation. The monodromy group is

in general a subgroup of the differential Galois group attached to the operator L. If

the singular points of L are regular, then the differential Galois group and the Zariski

closure of the monodromy group coincide.

It is well known that, in general, a differential operator L is parameterised by the

set of singular points S, the set E of values of the mr exponents and vg,m(r) accessory

parameters: for example (see Ince [Inc44] or Dwork [Dwo90])

(1.5) v0,m(r) = (m − 1)[m(r − 2) − 2]/2.

Let B be the set of the accessory parameters.

For the rest of this paper we shall consider only second order differential operators.

If τ is the ratio of two functions in a basis of the set of solutions of L at an arbitrary
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point P ∈ C \ S, the analytic continuation of τ along the paths in π1(P, C \ S) yields

to a map

(1.6) π1(P, C \ S) → PGL(2, C)

The image of this map is called the projective monodromy group of the operator L.

Its conjugation class does not depend on P , nor on τ .

If α1, α2 are the exponents of the operator L at a point P ∈ C, let ∆P,L = |α1 − α2|
be the exponent difference of L at P and ∆L =

∑

P∈P1 (∆P,L − 1). Hereafter, a

singular point where the exponent difference is an integer greater than 2 is called a

quasi-apparent singularity. As in [BvdW04], a second order operator L is called pure

if it has no quasi-apparent singularity.

Definition 1.1. — The couples (C, L), (C′, L′) are called projectively equivalent if

there exists an isomorphism f : C → C′ such that L is a weak pull-back of L′

via f .

In this situation, L and L′ have the same projective monodromy group and the

same exponent differences. Throughout this paper, an abstract operator will be an

equivalence class of couples (C, L). Eventually, the curve C may not be mentioned

explicitly, if no confusion is possible.

Let now f : C → C′ be a non constant morphism of algebraic curves and L and L′

be second order linear differential operators on C and C′ respectively. We say that

L is a weak pull-back of L′ via f if τ ′ ◦ f is a ratio of independent solutions of L,

provided that τ ′ is a ratio of independent solutions of L′. As we are interested in

studying the set of differential operators modulo the projective equivalence, we shall

use freely in this paper the notation f∗L′ for a weak pull-back of the operator L′. If

L = f∗L′, it follows immediately that ∆P,L = eP · ∆f(P ),L′ for any P ∈ C, where

eP is the ramification index of f at P . The Riemann-Hurwitz formula implies (see

Baldassarri and Dwork [BD79], Lemma 1.5, or Baldassarri [Bal80])

(1.7) ∆L + 2 − 2g(C) = deg f · (∆L′ + 2 − 2g(C′)).

2. Second order differential operators with algebraic solutions

The problem we are interested in is the following: which are the conditions that

one has to impose on the sets S, E, B for the solutions of the corresponding operator

L to be all algebraic over K? A more precise question is the following version of

Dwork’s accessory parameter problem: let V be the set of all operators of order 2 on

the curve C, with fixed S and E. Let V1 be the subset of V corresponding to equations

with a full set of algebraic solutions. Does V1 correspond to an algebraic subset of V ?
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Remark 2.1. — In this paper, we shall present a global approach to this type of ques-

tion. Nevertheless, the following connection with the p-adic operators is worth men-

tioning. Suppose, for simplicity, that C = P1 and the coefficients of L are in Q(x).

One can reduce the coefficients of L modulo almost all primes of the field of definition

of L. Also, one can ask about the p-adic behaviour of the solutions near singular

points, for various primes p. If a solution of L is algebraic, then for almost all primes

the series representing this solution converges and is bounded by unity in the open

p-adic disk D(0, 1−) of radius unity and centre at the origin (where p is the residue

characteristic). Dwork formulated the following conjecture in [Dwo90]:

Let V be the set of all operators of order n with coefficients in Q(x), with fixed S

and E. Let V1 the subset of V corresponding to equations where solutions converge

in D(t, 1−) for almost all p. Then V1 corresponds to an algebraic subset of V .

Here, t is a generic point in some transcendental extension of Qp, |t|p = 1, such that

the residue class of t is transcendental over Fp. On the other hand, if an operator L has

a full set of algebraic solutions, then for almost all primes the reduced operator has a

full set of solutions or, equivalently, its p-curvature is zero. The celebrated p-curvature

conjecture of Grothendieck states that the converse is also true: an operator L has a

full set of algebraic solutions if and only if the p-curvature of the reduced operator is

zero for almost all primes. For more details on p-adic differential operators, see Dwork

[Dwo81], [Dwo90]. For Katz’s proof of Grothendieck’s conjecture for Picard-Fuchs

operators, see Katz [Kat72]. We should also mention (see Honda [Hon81] and also

Katz [Kat70]) that nilpotent p-curvature for almost all p implies that the singularities

of a linear operator L are regular. Moreover, if this happens for a set of primes of

density 1, then the exponents are rational numbers.

If L is a second order differential operator on C, the following properties are equiv-

alent:

1. - L has a full set of algebraic solutions

2. - the monodromy group of L is finite

3. - the projective monodromy group of L is finite and the Wronskian is an algebraic

function over K

In this case, the projective monodromy group is conjugated with the Galois group

of the extension K ⊂ K(τ), where τ is the ratio of two functions in a base of the

space of solutions of L.

The problem of determining the linear operators on P1 with a full set of algebraic

solutions, known in the last decades of the XIX-th century as Fuchs’ problem, was

solved by Schwarz [Sch72] for the hypergeometric operators. Those can be written

in the following normalised form:

(2.8) Hλ,µ,ν = D2 +
1 − λ2

4x2
+

1 − µ2

4(x − 1)2
+

λ2 + µ2 − ν2 − 1

4x(x − 1)
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where λ + µ + ν > 1. Such an operator has three singular points, 0, 1 and ∞, where

the exponent differences ∆P,Hλ,µ,ν
are equal to λ, µ, ν respectively. Using geometric

methods and ideas originated in works of Abel and Riemann, Schwarz obtained a

table of 15 cases (up to an ordering of λ, µ, ν) when the algebraicity of the solutions

is satisfied. He so determined all the second order operators on the projective line,

with three singular points and a full set of algebraic solutions.

Schwarz’s solution was developed by Klein [Kle77], who reduced the list to five

essential cases which emphasise the role played by the regular solids. The values of

the parameters λ, µ, ν corresponding to hypergeometric operators algebraically inte-

grable, as well as the corresponding projective monodromy groups, are contained in

the following table (“the basic Schwarz list”):

(λ, µ, ν) GHλ,µ,ν

(1/n, 1, 1/n) Cn, cyclic of order n

(1/2, 1/n, 1/2) Dn, dihedral of order 2n

(1/2, 1/3, 1/3) A4, tetrahedral

(1/2, 1/3, 1/4) S4, octahedral

(1/2, 1/3, 1/5) A5, icosahedral

Klein also proved that the second order linear differential operators with a full set of

algebraic solutions are weak pull-backs, by a rational function, of the hypergeometric

operators in the basic Schwarz.

At about the same time, Jordan [Jor78] noticed that the algebraicity of all the

solutions is equivalent to the finiteness of the monodromy group. He approached

Fuchs’ problem for second and higher order operators by purely group-theoretic means

and he proved that the finite subgroups of GL(n, C) could by classified into a finite

number of families, similarly to the case n = 2, when there are two infinite families

and three other groups (Jordan’s finiteness theorem). For a historic survey of Fuchs’

problem, the reader may consult Gray [Gra86].

It is not due to the lack of interest in the subject that the case of hypergeometric

operators remains, up to our days, the only one where the operators with a full set

of algebraic solutions are completely determined. A glance to the formula 1.5 tells us

that if L is a second order operator on the projective line with three singular points,

then there is no accessory parameter. The operator L is rigid, that is, it is completely

determined by the singular points and the local exponents, in other words, by the

local data. The reader is referred to Katz [Kat96] for more details on the rigidity.

If the accessory parameters are present, the problem becomes much more difficult.

And this happens as soon as there is a forth singular point. Along with the p-adic

machinery and with group theoretic methods, Klein’s results have been, in the last
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