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ON THE RIEMANN-HILBERT PROBLEM AND STABLE
VECTOR BUNDLES ON THE RIEMANN SPHERE

by

Stéphane Malek

A la mémoire d’Andrey Bolibrukh

Abstract — In this note we give a brief survey of recent results on the classical
Riemann-Hilbert problem for differential equations on the Riemann sphere. We em-
phasize geometrical aspects of the problem involving the notion of stability of vector
bundles with connections.

RésuméProbleme de Riemann-Hilbert et fibrés stables sur la sphérde Riemann)

Dans cette note nous donnons un bref survol de résultats récents sur le probleme
classique de Riemann-Hilbert pour des équations différentielles sur la sphere de Rie-
mann. Nous mettons 'accent sur des aspects géométriques du probléme faisant in-
tervenir la notion de stabilité de fibrés vectoriels avec connexions.

1. Introduction

Let us briefly recall what is meant by the Riemann-Hilbert problem for differential
equations on the Riemann sphere. This problem was included by D. Hilbert in his
famous list under the number twenty one and can be reformulated as follows:

Given a representation of the fundamental group of the punctured Riemann sphere,

x : m(PY(C)\ S; z) — GL(p, C)

where S ={ay,...,a2} is a set of points in C, does there exist a fuchsian differential
system on P1(C),

dy ~ B

dz ; z—a; Y

where B;, 1 <1 < mn, are p X p-matrices with entries in C satisfying Z?Zl B; =0, (so
that 0o is not a singular point), for which x is a monodromy representation?
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This problem has a long story. For more than seventy years, it was commonly
believed that it had a positive solution and had been completely solved by J. Plemelj
in 1908. But at the beginning of the eighties an error was discovered in the proof, see
[Tre83]. It turned out that J. Plemelj could only obtain a positive answer in the case
of differential systems with regular singularities, see [Ple64]. Later on, W. Dekkers
solved the problem positively in dimension 2, see [Dek79].

Then, in 1989, A. Bolibrukh gave a final and surprising answer to the problem.
It turns out that this problem has in gemeral a negative answer. A. Bolibrukh pub-
lished an important counterexample for a representation of dimension three with four
singular points on the Riemann sphere. He also classified all the representations in di-
mension three that can be realized as monodromy representations of fuchsian systems,
see [AB94], [Bol95], [Bea93]. This classification in dimension three has been estab-
lished recently using tools from complex algebraic geometry, see [GS99]. In 2000, a
classification for the representations in dimension four was given by A. Gladyshev,
see [Gla00].

In 1992, A. Bolibrukh showed that for irreducible representations, the problem has
a positive solution, see [AB94], [Bol95], a result also obtained independently by V.
Kostov at the same time, see [Kos92]. More recently, the subject has been revisited
in a more algebraic setting, see [Sab02], [dPS03|, and generalizations have been
obtained when P!(C) is replaced by a Riemann surface of positive genus, see [EV99).

2. The geometrical approach

The methods introduced by A. Bolibrukh use to a large extend the geometry of
vector bundles on the Riemann sphere. To understand his approach, we will state the
Riemann-Hilbert problem in a more geometrical setting.

Let us first recall the method of attack of P. Deligne to handle the problem in the
case of regular singularities, see [Del70].

It is a classical fact that starting from the representation y, one can construct a
vector bundle F on the open manifold P'(C) \ S, endowed with a flat holomorphic
connection V with y as its holonomy or monodromy representation, see [Del70]. By
a classical theorem of Stein, we know that F is in fact holomorphically trivial on
PY(C)\ S. In terms of differential equations, one gets a differential system

(D) dy = wy

with x as monodromy representation and S as the singular divisor of the differential
form w, and with regular singularities at the points a;, 1 <14 < n, see also [R6h57].
Now consider, for all 1 < ¢ < n, the matrices

1
B; = 5 log x(03),
5 log x(@)
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for a given determination of the logarithm, where o; denotes the homotopy class of a
simple loop around a; with base point zg enclosing no other a;. Modulo conjugation
with a matrix S;, we may assume that the matrix E; is upper triangular, for 1 <i < n.

We also consider local differential systems dy = w;y defined on a neighborhood of
a; by

E;
(z —a;)
By construction, each such local system is fuchsian at a; and has the requested local
monodromy. The idea of P. Deligne was to glue together these local systems with the
help of the vector bundle (£, V) in order to get a vector bundle E on P*(C) endowed
with a connection V which has logarithmic singularities at the points a;, 1 <7 < n.
This construction of E provides what P. Deligne calls the canonical extension of E
on P(C).

wi(z) = dz.

Instead canonical extensions, A. Bolibrukh considered extensions of £ on P! (C) by
means of local fuchsian systems of the form dy = w;\y where

dz

Y
Z — a;

whi(z) = (A + (2 — a) M Ei(z — ag) ™)

2
where A; is a diagonal matrix with integer entries such that the matrix
(z—a) M Ei(z —a;)™

is holomorphic at a;, for all 1 < ¢ < n. This idea came from what are called Levelt
decompositions of fundamental matrices of differential systems with regular singular-
ities, see [AB94], [Bol95], [Gan59], [Lev61].

This construction provides an infinite family £ of vector bundles (E*, V%) on
PY(C), where the connections V* have logarithmic singularities on S, parametrized
by n—tuples A = (A1,...,Ap).

A. Bolibrukh has moreover shown that any extension of £ on P!(C) with a con-
nection V having logarithmic singularities, can be obtained in this manner [AB94],
[Bol95]. As a result, the Riemann-Hilbert problem can be stated as follows:

A representation

x : 1 (PY(C) \ S; z9) — GL(p, C)
1s given. Does there exist n diagonal matrices A;, 1 < i < n, with integer entries such
that (E, V™) € & is holomorphically trivial on PY(C) for A = (Ay,...,Ay).

The result obtained in 1992 by A. Bolibrukh can be reformulated in the following
way:

Let
x s m(PY(C) \ S5 20) — GL(p,C)
be an irreducible representation. Then, there exist n diagonal matrices A;, 1 <1i < n,
with integer entries such that (E*, V™) € & is holomorphically trivial on P1(C) for
A=(A1,...,Ap).
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One of the main geometrical ingredients in the proof was to observe that if the
representation x is irreducible then the splitting type of the bundle E* on P*(C),

(0) EA=0(cr) @@ O(cy)
satisfies the important property that

(B) lei = ¢;] < (n = 2)p,
forall 1 <i,5 <p.

3. The Riemann-Hilbert problem and stability assumptions

In this section, we mainly restate recent results of A. Bolibrukh that give new
sufficient conditions to solve positively the Riemann-Hilbert problem on Riemann
surfaces of genus g > 0. But, for simplicity, we will focus here on the case of the
Riemann sphere only and we will explain the results obtained in [Mal02a] in a more
geometrical language.

It is known, from the work of C. Simpson, that the notion of irreducibility is
actually related to the concept of stability of vector bundles with connections, see
[Sim92]. Let us first recall the definition of it.

Definition 3.1 — A pair (F,V) of a vector bundle F and a connection V is called
stable if for any proper subbundle F’, 0 C F’ C F, that is stabilized by the connection
v,

V(F') C F' @ Q' (log S),
the slope p(F’) = deg(F’)/rank(F") of F’ is smaller than the slope u(F) of F,

(+) u(E') < u(F).

This notion of stability has to be distinguished from the classical one, where the
inequality (*) has to be satisfied for all proper subbundles F’ of F, see for instance
[OSS80]. In particular, one easily sees that there exists no stable (in the classical
sense) vector bundle F of degree zero on P*(C). Indeed, one should have the relations
1+ 4e¢,=0and¢; <0,1<i<p, for the splitting (O) of the bundle F on P!(C),
which is impossible.

We are now able to state the main result of this note, see [Bol02].
Theorem 3.2 — Let
x 1 m(PY(C) \ S;20) — GL(p, C)
be a representation. Assume that among the constructed pairs (E®, VA) €&, there is
a stable pair (BN, VA"). Then, one can construct another pair (EX V') € € that

is stable, of degree zero and holomorphically trivial on P*(C). The Riemann-Hilbert
problem has therefore a positive solution for the representation x.
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Proof. — The first part of the proof involves much calculation. Starting from the
initial stable pair (EAO,VAO) € &, one constructs a new stable pair (EAl , VAI) € & of
degree zero, with large differences (in fact larger than the integer (n — 2)p?) between
the entries )\g’l, 1 < j < p of each A}. This property turns out to be crucial as we
will see later. The details of this construction are explained in [Bol02].

The vector bundle E on PY(C) \ S (see section 2) is described by means of
a locally constant cocycle {ga,3}a,perc corresponding to a covering {Ua,}acg of
PL(C) \ S. By construction, the vector bundle EM s described by a cocycle
{90.6(2), gi.a(2) <i<n.apec, for a covering {O;, Usti<i<n.acc of P1(C) which is
defined as follows. For a small neighborhood O; of a;, 1 < i < n, the function ¢; o(2)
defined on O; N U, is of the form

Az — ap)P

Gia(2)=(z—a)%(z—a

From now on, to simplify the notation, we assume that a; = 0. Again, by the result
of Stein, the vector bundle EA' is holomorphic trivial on P*(C) \ {0}, and without
loss of generality, we may assume that all the functions g¢; o(2), for i # 1, a € L,
split as products g; o(2) = I'; ' (2)Ta(z) where T';!(2) is holomorphic invertible on
O; and T'o(2) is holomorphic invertible on U,. By the holomorphic triviality of £ on
PY(C) \ S, the functions g, 5 also split.

From the decomposition (O) for the vector bundle EA'| we get in particular that
there exist holomorphic invertible matrices I'1(z) (resp. I'n(2)) on a neighborhood of
0 (resp. on a neighborhood of co0) such that

(©) Fl(z)zKI‘a(z) =g1.a(2) = zAizEl,

on O NU,, where
K = diag(ci,...,¢p)

and ¢; > --- > ¢, with ¢y +---+¢, =0.

Now, the geometrical key-ingredient of the proof is that the boundedness property
of the splitting type is preserved when one replaces the notion of irreducibility by the
notion of stability. More precisely, when a pair (E®, V*) is stable, then we get the
estimates

(B) lei = ¢;] < (n = 2)p,

for all 1 < 4,5 < p, in its decomposition (O) on P*(C). For an analytical proof, see
[Mal02a] and for a more geometrical proof based on Harder-Narasimhan filtrations,
see [Bol02].

On the other hand, due to a lemma of A. Bolibrukh, see [Bol95|, there exists a
matrix [y (z), holomorphic invertible on a neighborhood of infinity such that

T, (z)ziKI‘fl (2) = I (Z)ZKG )
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