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GALOIS THEORY OF ZARISKI PRIME DIVISORS

by

Florian Pop

Abstract. — In this paper we show how to recover a special class of valuations (which
generalize in a natural way the Zariski prime divisors) of function fields from the
Galois theory of the functions fields in discussion. These valuations play a central
role in the birational anabelian geometry and related questions.

Résumé(Théorie de Galois des diviseurs premiers de Zariski). — Dans cet article nous
montrons comment retrouver une classe spéciale de valuations de corps de fonctions
(qui généralisent naturellement les diviseurs premiers de Zariski) à partir de la théorie
de Galois des corps de fonctions en question. Ces valuations jouent un rôle central en
géométrie anabélienne birationnelle et pour d’autres questions connexes.

1. Introduction

The aim of this paper is to give a first insight into the way the pro-` Galois theory

of function fields over algebraically closed base fields of characteristic 6= ` encodes the

Zariski prime divisors of the function fields in discussion. We consider the following

context:

• ` is a fixed rational prime number.

• K|k are function fields with k algebraically closed of characteristic 6= `.

• K(`)|K is the maximal pro-` Galois extension of K in some separable closure of

K, and GK(`) denotes its Galois group.

It is a Program initiated by Bogomolov [Bog] at the beginning of the 1990’s which

has as ultimate goal to recover (the isomorphy type of) the field K from the Ga-

lois group GK(`). Actually, Bogomolov expects to recover the field K even from the
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Galois information encoded in PGalcK , which is the quotient of GK(`) by the sec-

ond factor in its central series. Unfortunately, at the moment we have only a rough

idea (maybe a hope) about how to recover the field K from GK(`), and not a defini-

tive answer to the problem. Nevertheless, this program is settled and has a positive

answer, in the case k is an algebraic closure of a finite field, Pop [Popd]; see also

Bogomolov–Tschinkel [BTb] for the case of function fields of smooth surfaces with

trivial fundamental group.

It is important to remark that ideas of this type were first initiated by Neukirch,

who asked whether the isomorphism type of a number field F is encoded in its ab-

solute Galois group. The final result in this direction is the celebrated result by

Neukirch, Iwasawa, Uchida (with previous partial results by Ikeda, Komatsu, etc.)

which roughly speaking asserts that the isomorphy types of global fields are functo-

rially encoded in their absolute Galois groups. Nevertheless, it turns out that the

result above concerning global fields is just a first piece in a very broad picture,

namely that of Grothendieck’s anabelian geometry, see Grothendieck [Grob], [Groa].

Grothendieck predicts in particular, that the finitely generated infinite fields are func-

torially encoded in their absolute Galois groups. This was finally proved by the author

Pop [Popc], [Popa]; see also Spiess [Spi].

The strategy to prove the above fact is to first develop a “Local theory”, which

amounts of recovering local type information about a finitely generated field from its

absolute Galois group. And then “globalize” the local information in order to finally

get the field structure. The local type information consists of recovering the Zariski

prime divisors of the finitely generated field. These are the discrete valuations which

are defined by the Weil prime divisors of the several normal models of the finitely

generated field in discussion.

In this manuscript, we will mimic the Local theory from the case of finitely gener-

ated infinite fields, and will develop a geometric pro-` Local theory, whose final aim

is to recover the so called quasi-divisorial valuations of a function field K|k form GK(`)

– notations as at the beginning of the Introduction. We remark that this kind of

results played a key role in Pop [Popd], where only the case k = Fp was considered.

We mention here briefly the notions introduced later and the main results proved

later in the paper – notations as above.

Let v be some valuation of K(`), and for subfields Λ of K(`) denote by vΛ and Λv

the value group, respectively residue field, of the restriction of v to Λ. And let Tv ⊆ Zv

be the inertia, respectively decomposition, group of v in GK(`) = Gal
(

K(`)|K
)

.

First recall, see Section 3, A), that a Zariski prime divisor v of K(`) is any valuation

of K(`) whose restriction v|K to K “comes from geometry”, i.e., the valuation ring of

v|K equals the local ring OX,xv
of the generic point xv of some Weil prime divisor

of some normal model X → k of K|k. Thus vK ∼= Z and Kv|k is a function field
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satisfying td(Kv |k) = td(K|k) − 1. Now it turns out that Zv has a “nice” structure

as follows:

Tv
∼= Z` and Zv

∼= Tv × GKv(`) ∼= Z` × GKv(`).

We will call the decomposition groups Zv of Zariski prime divisors v of K(`)|k

divisorial subgroups of GK(`) or of K.

Now in the case k is an algebraic closure of a finite field, it turns out that a maximal

subgroup of GK(`) which is isomorphic to a divisorial subgroup is actually indeed a

divisorial subgroup of GK(`), see [P4]; this follows nevertheless from Proposition 4.1

of this manuscript, as k has no no-trivial valuations in this case.

On the other hand, if k has positive Kronecker dimension (i.e., it is not alge-

braic over a finite field), then the situation becomes more intricate, as the non-trivial

valuations of k play into the game. Let us say that a valuation v of K(`) is a quasi-

divisorial valuation, if it is minimal among the valuations of K(`) having the properties:

td(Kv |kv) = td(K|k) − 1 and vK/vk ∼= Z, see Definition 3.4, and Fact 5.5, 3). Note

that the Zariski prime divisors of K(`) are quasi-divisorial valuations of K(`).

On the Galois theoretic side we make definitions as follows: Let Z be a closed

subgroup of GK(`).

i) We say that Z a divisorial like subgroup of GK(`) or of K, if Z is isomorphic to

a divisorial subgroup of some function field L|l such that td(L|l) = td(K|k), and l

algebraically closed of characteristic 6= `.

ii) We will say that Z is quasi-divisorial, if Z is divisorial like and maximal among

the divisorial like subgroups of GK(`).

Finally, for t ∈ K a non-constant function, let Kt be the relative algebraic closure

of k(t) in K. Thus Kt|k is a function field in one variable, and one has a canonical

projection pt : GK(`) → GKt
(`).

In these notations, the main results of the present manuscript can be summarized

as follows, see Proposition 4.1, Key Lemma 4.2, and Proposition 4.6.

Theorem 1.1. — Let K|k be a function field with td(K|k) > 1, where k is algebraically

closed of characteristic 6= `. Then one has:

(1) A closed subgroup Z ⊂ GK(`) is quasi-divisorial ⇐⇒ Z is maximal among the

subgroups Z ′ of GK(`) which have the properties:

i) Z ′ contains closed subgroups isomorphic to Zd
` , where d = td(K|k).

ii) Z ′ has a non-trivial pro-cyclic normal subgroup T ′ such that Z ′/T ′ has

no non-trivial Abelian normal subgroups.

(2) The quasi-divisorial subgroups of GK(`) are exactly the decomposition groups of

the quasi-divisorial valuations of K(`).

(3) A quasi-divisorial subgroup Z of GK(`) is a divisorial subgroup of GK(`) ⇐⇒

pt(Z) is open in GKt
(`) for some non-constant t ∈ K.
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Among other things, one uses in the proof some ideas by Ware and Arason–

Elman–Jacob, see e.g. Engler–Nogueira [EN] for ` = 2, Engler–Koenigsmann [EK]

in the case ` 6= 2, and/or Efrat [Efr] in general. And naturally, one could use here

Bogomolov [Bog], Bogomolov–Tschinkel [BTa]. We would also like to remark that

this kind of assertions – and even stronger but more technical ones – might be ob-

tained by employing the local theory developed by Bogomolov [Bog], and Bogomolov–

Tschinkel [BTa].

Concerning applications: Proposition 4.1 plays an essential role in tackling Bogo-

molov’s Program in the case the base field k is an algebraic closure of a global field

(and hopefully, in general); and Proposition 4.6 is used in a proof of the so called

Ihara/Oda–Matsumoto Conjecture. (These facts will be published soon).
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2. Basic facts from valuation theory

A) On the decomposition group (See e.g. [End], [Bou], [ZS].)— Consider the

following context: K̃|K is some Galois field extension, and v is a valuation on K̃. For

every subfield Λ of K̃ denote by vΛ and Λv the valued group, respectively the residue

field of Λ with respect to (the restriction of) v on Λ. We denote by p = char(K̃v) the

residue characteristic. Further let Zv, Tv, and Vv be respectively the decomposition

group, the inertia group, and the ramification group of v in Gal(K̃|K), and KV , KT ,

and KZ the corresponding fixed fields in K̃.

Fact 2.1. — The following are well known facts from Hilbert decomposition, and/or

ramification theory for general valuations:

1) K̃v |Kv is a normal field extension. We set Gv := Aut(K̃v |Kv). Further,

Vv ⊂ Tv are normal subgroups of Zv, and one has a canonical exact sequence

1 → Tv → Zv → Gv → 1 .

One has v(KT ) = v(KZ) = vK, and Kv = KZv. Further, KTv |Kv is the separable

part of the normal extension K̃v |Kv, thus it is the maximal Galois sub-extension of

K̃v |Kv. Further, KV |KT is totally tamely ramified.

2) Let µK̃v denote the group of roots of unity in K̃v. There exists a canonical

pairing as follows: ΨK̃ : Tv × vK̃/vK → µK̃v, (g, vx) 7→ (gx/x)v, and the following

hold: The left kernel of ΨK̃ is exactly Vv. The right kernel of ΨK̃ is trivial if p = 0,

respectively equals the Sylow p-group of vK̃/vK if p > 0. In particular, Tv/Vv is

Abelian, Vv is trivial if char(K) = 0, respectively equals the unique Sylow p-group of

Tv if char(K) = p > 0. Further, ΨK̃ is compatible with the action of Gv.
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3) Suppose that v′ ≤ v is a coarsening of v, i.e., Ov ⊆ Ov′ . Then denoting

v0 = v/v′ the valuation induced by v on K̃v′, and by Zv0
its decomposition group in

Gv′ = Aut(K̃v′|Kv), one has: Tv ⊆ Zv are the preimages of Tv0
⊆ Zv0

in Zv′ via the

canonical projection Zv′ → Gv′ . In particular, Tv′ ⊆ Tv and Zv ⊆ Zv′ .

Fact 2.2. — Let ` be a rational prime number. In the notations and the context from

Fact 2.1 above, suppose that K contains the `∞ roots of unity, and fix once for all an

identification of the Tate `-module of Gm,K with Z`(1), say

ı : T` → Z`(1).

And let the Galois extensions K̃|K considered at Fact 2.1 satisfy K`,ab ⊆ K̃ ⊆ K(`),

where K`,ab is the maximal Abelian extension of K inside K(`). Finally, we consider

valuations v on K̃ such that Kv has characteristic 6= `. Then by the discussion above

we have: Vv = {1}, and further: vK̃ is the `-divisible hull of vK; and the residue

field extension K̃v |Kv is separable and also satisfies the properties above we asked

for K̃|K to satisfy.

1) For n = `e, there exists a unique sub-extension Kn|K
T of K̃|KT such that

Kn|K
Z is a Galois sub-extension of K̃|KZ , and vKn = 1

n
vKT = 1

n
vK. On the other

hand, the multiplication by n induces a canonical isomorphism 1
n

vK / vK ∼= vK/n.

Therefore, the pairing ΨK̃ gives rise to a non-degenerate pairing

Ψn : Tv/n× vK/n → µn
ı−→ Z/n(1),

hence to isomorphisms θv,n : vK/n → Hom(Tv, µn), θv,n : Tv/n → Hom(vK, µn).

In particular, taking limits over all n = `e, one obtains a canonical isomorphism of

Gv-modules

θv : Tv → Hom
(

vK, Z`(1)
)

.

2) Next let B = (vxi)i be an F`-basis of the vector space vK / `. For every xi,

choose a system of roots (αi,n)n in K̃ such that α`
i,n = αi,n−1 (all n > 0), where

αi,0 = xi. Then setting K0 = K[(αi,n)i,n] ⊂ K̃, it follows that v is totally ramified

in K0|K, and vK0 is `-divisible. Therefore, K0v = Kv, and the inertia group of

v in K̃|K0 is trivial. In particular, Tv has complements in Zv, and Tv
∼= ZB` (1) as

Gv-modules.

3) Since by hypothesis µ`∞ ⊆ K, the action of Gv on ZB` (1) ∼= Tv is trivial. In

particular, setting δv := |B| = dim F`
(vK/`) we finally have:

Zv
∼= Tv × Gv

∼= Z
δv

` × Gv.

B) Two results of F. K. Schmidt. — In this subsection we will recall the pro-`

form of two important results of F. K. Schmidt and generalizations of these like the

ones in Pop [Popb], The local theory, A. See also Endler–Engler [EE].

Let ` be a fixed rational prime number. We consider fields K of characteristic 6= `

containing the `∞ roots of unity. For such a field K we denote by K(`) a maximal

pro-` Galois extension of K. Thus the Galois group of K(`)|K is the maximal pro-`
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