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Abstract. — Geometric considerations identify what properties we desire of the canon-
ical sequence of finite groups that are used to define modular towers. For instance, we
need the groups to have trivial center for the Hurwitz spaces in the modular tower to
be fine moduli spaces. The Frattini series, constructed inductively, provides our se-

quence: each group is the domain of a canonical epimorphism, which has elementary
abelian p-group kernel, having the previous group as its range. Besides satisfying
the desired properties, this choice is readily analyzable with modular representation
theory.

Each epimorphism between two groups induces (covariantly) a morphism between
the corresponding Hurwitz spaces. Factoring the group epimorphism into interme-
diate irreducible epimorphisms simplifies determining how the Hurwitz-space map
ramifies and when connected components have empty preimage. Only intermediate
epimorphisms that have central kernel of order p matter for this. The most impor-
tant such epimorphisms are those through which the universal central p-Frattini cover
factors; the elementary abelian p-Schur multiplier classifies these.

This paper, the second of three in this volume on the topic of modular towers,
reviews for arithmetic-geometers the relevant group theory, culminating with the
current knowledge of the p-Schur multipliers of our sequence of groups.
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Résumé(Théorie des groupes pour les tours modulaires). —Des considérations géomé-
triques permettent d’identifier quelles propriétés nous souhaitons pour la suite cano-
nique de groupes finis qui sont utilisés pour définir les tours modulaires. Par exemple,
les groupes doivent être de centre trivial pour que les espaces de Hurwitz constituant
la tour modulaire soient des espaces de modules fins. Notre suite est donnée par la
série de Frattini, qui est définie inductivement : chaque groupe est le domaine d’un
épimorphisme canonique, lequel a comme noyau un p-groupe abélien élémentaire, et
le groupe précédent comme image. En plus de satisfaire les propriétés désirées, ce
choix s’interprète naturellement en termes de théorie des représentations modulaires.

Chaque épimorphisme entre deux groupes induit (de manière covariante) un mor-
phisme entre les espaces de Hurwitz correspondants. La factorisation de l’épimor-
phisme de groupes en épimorphismes irréductibles intermédiaires permet de déter-
miner plus simplement comment l’application entre espaces de Hurwitz se ramifie
et quand les composantes connexes ont des images inverses vides. Pour cela, seuls
comptent les épimorphismes intermédiaires qui ont un noyau central d’ordre p. Les
plus importants de ces épimorphismes sont ceux à travers lesquels le p-revêtement
universel de Frattini se factorise ; ils sont classifiés par le p-groupe élémentaire abélien
des multiplicateurs de Schur.

Cet article, le deuxième de trois sur les tours modulaires dans ce volume, revient,
à l’intention des arithméticiens-géomètres, sur la théorie des groupes nécessaire à

cette théorie, pour aboutir à l’état actuel des connaissances sur les p-groupes de
multiplicateurs de Schur de notre suite de groupes.
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1. Introduction

This survey broadly divides into two parts. The first part (§2 and §3) recaps Dèbes’

presentation [Dèb] of the universal p-Frattini cover and of modular towers. In partic-

ular, §2 illustrates difficulties arising from the use of Zorn’s lemma in the “top-down”

construction of the universal p-Frattini cover, while §3 concentrates on the conse-

quences which the properties of the finite groups Gn have on the modular towers they
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define. The second part constructs the groups Gn and derives their properties from

the “bottom-up”, using modular representation theory and, especially, the categorical

equivalence of Gruenberg and Roggenkamp [Gru76, §10.5]. The appendix displays

the functors for this categorical equivalence, since it doesn’t seem to be well-known.

Despite relatively few explicit citations herein, many of the results surveyed have

been comprehensively catalogued (and produced) by Fried in his work on modular

towers. His series of papers on the subject are a primary source: [Fri95], [FK97],

[Fri02], [BF02], [Fri], and [FS]. I have tried to introduce required results from mod-

ular representation theory steadily but gently; for a general reference, I recommend

Benson’s text [Ben98a].

Before proceeding, recall some elementary categorical definitions.

Definition 1.1. — In any category, for any objects X and Y , a morphism φ ∈

Hom(X,Y ) is epic iff, for all objects Z and for all morphisms ψ1, ψ2 ∈ Hom(Y, Z),

if ψ1 ◦ φ = ψ2 ◦ φ then ψ1 = ψ2.

This purely categorical definition is synonymous with “surjective” in the categories

of abstract groups, profinite groups, and modules.

Definition 1.2. — An object P of a category C is projective iff, for any objects X

and Y of C, any morphism ψ ∈ Hom(P, Y ), and any epic morphism φ ∈ Hom(X,Y ),

there exists a morphism π ∈ Hom(P,X) such that φ ◦ π = ψ, as illustrated in the

following commutative diagram:

P
∀ψ
−→ Yy∃π ‖

X
∀φ
−� Y

An object F of C is Frattini iff every morphism to F is epic, i.e., for any object X

of C and any morphism φ ∈ Hom(X,F ), φ is epic.

Given an object X of a category C, a cover of X is defined to be an epic mor-

phism in Hom (Y,X) for some object Y . The collection of covers of X comprise

the class of objects of a category whose morphisms are as follows — given two cov-

ers, φ1 ∈ Hom(Y,X) and φ2 ∈ Hom(Z,X), Hom (φ1, φ2) is defined to be the set

of morphisms ψ in Hom(Y, Z) such that φ2 ◦ ψ = φ1. We also sometimes consider

subcategories where we restrict the covers under consideration, but in these cases the

set of morphisms between two objects remains the same as in the full category of

covers, i.e., these subcategories are full in the technical sense. In the categories of

covers we will consider, epic morphisms will always turn out to be surjective. Hence,

equivalences between these categories pass along surjectivity of morphisms.

Conventions. The number p is always a positive prime rational integer, G is always

a finite group, and k is always a field with characteristic p. The cyclic group of order
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n is Cn, the dihedral group of order 2n is Dn, the alternating group on n letters is

An, and the symmetric group on n letters is Sn. The conjugate gag−1 of one element

a of G by another element g is denoted by ga. The commutator [g, h] of two elements

g and h of G is g−1h−1gh. All modules are finitely generated left-modules. The ring

of p-adic integers is denoted by Zp, and the field with q elements by Fq.

2. The universal p-Frattini cover

Fix a finite group G and consider the category of covers of G within the category

of profinite groups; call this category of covers C(G). A projective Frattini object in

this category is called the universal Frattini cover of G, as is its domain, which

is given the notation G̃. The first construction of this, due to Cossey, Kegel, and

Kovács [CKK80, Statement 2.4], used Zorn’s lemma: projective profinite groups are

precisely those isomorphic to closed subgroups of free profinite groups [FJ05, Propo-

sition 22.4.7], so take a minimal closed subgroup mapping onto G in any epimorphism

onto G with domain a free profinite group. The kernel of the universal Frattini cover

is (pro-)nilpotent by the Frattini Argument from which its name derives. Hence, it

is the product of its p-Sylows; being closed subgroups of a projective profinite group,

they will have to be projective as well, and projective pro-p groups must be free as

pro-p groups [FJ05, Proposition 22.7.6].

Now consider pG̃, the quotient of G̃ by the p′-Hall subgroup of the kernel of G̃ � G,

i.e., the product of all of the s-Sylows of the kernel, where s denotes a rational prime

distinct from p. This quotient profinite group is called the universal p-Frattini

cover ofG, as is the natural map toG which it inherits. This map is also characterized

by being a projective Frattini object in the full subcategory Cp∞(G) of C(G) whose

objects are precisely those objects of C(G) with kernel a pro-p group. The kernel of

the universal p-Frattini cover is a free pro-p group called ker0.

The easiest example is when G is a p-group; then, pG̃ is a free pro-p group with the

same minimal number of (topological) generators as G. As a consequence of Schur-

Zassenhaus, if G merely has a normal p-Sylow P , then G is a semi-direct product

P>/H , where H ' G/P ; we say G is p-split. When G is p-split, pG̃ ' F̂n(p)>/H ,

where n is the minimal number of generators of the p-Sylow P of G and F̂n(p) is the

pro-p completion of the free group on n generators. The rank (minimal number of

topological generators) of ker0 is 1 + (n− 1)|P |, by the Schreier formula.

Example 2.1. — The alternating group on four elements is isomorphic to V4>/C3,

where a given generator g of C3 acts on the Klein four-group V4 by cyclically permut-

ing the three non-trivial elements. Two (topological) generators a and b of F̂2(2) may

be chosen so that conjugation by g on F̂2(2) (in 2Ã4 ' F̂2(2)>/C3) is given by ga = b

and gb = b−1a−1. Clearly, a and b generate a discrete, dense, free subgroup F2 of
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F̂2(2) which is stabilized by C3. We get the following commutative diagram of exact

sequences:

1 −→ F2 −→ F2>/C3 −→ C3 −→ 1y
y ‖

1 −→ F̂2(2) −→ 2Ã4 −→ C3 −→ 1

By the Schreier formula, ker0 has rank 5 and its intersection with F2 is a free group

F5 of rank 5, normal inside of F2. There is another commutative diagram of exact

sequences:

1 −→ F5 −→ F2>/C3 −→ A4 −→ 1y
y ‖

1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1

where the vertical maps are dense group monomorphisms.

In general, the approach we’ve been following so far fails to provide detailed in-

formation about the universal p-Frattini cover, the preceding example being a rare

counterexample describable by a discrete analogue. Even p-split groups can often not

be described this way. One reason to expect this failure is the non-constructiveness of

using Zorn’s lemma to create the universal cover. Consider two examples illustrating

the limitations.

Example 2.2. — Our first example comes from Holt and Plesken [HP89]. Embedding

A4 into A5 leads to an embedding of 2Ã4 into 2Ã5 and the following commutative

diagram of exact sequences:

1 −→ F̂5(2) −→ 2Ã4 −→ A4 −→ 1y
y

y
1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The leftmost vertical map is an isomorphism. However, there is NO group Γ which

can fit into a commutative diagram of exact sequences of the following form, where

the vertical maps are dense monomorphisms:

1 −→ F5 −→ Γ −→ A5 −→ 1y
y ‖

1 −→ F̂5(2) −→ 2Ã5 −→ A5 −→ 1

The proof examines the character of the 2-adic Frattini lattice (cf. §7) of SL2(F5) and

is beyond the scope of these limited notes.

Example 2.3. — A result of Dyer and Scott [DS75] says that, for any automorphism

σ of prime order s acting on a discrete free group F , there is a basis X of F such that

one of the following holds for every x in X :

i) σ(x) = x
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