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FAMILIES OF LINEAR DIFFERENTIAL EQUATIONS ON

THE PROJECTIVE LINE

by

Maint Berkenbosch & Marius van der Put

Abstract. — The aim is to extend results of M.F. Singer on the variation of differential
Galois groups. Let C be an algebraically closed field of characteristic 0. One consid-
ers certain families of connections of rank n on the projective line parametrized by
schemes X over C. Let G ⊂ GLn be an algebraic subgroup. It is shown that X(= G),
the set of closed points with differential Galois group G, is constructible for all fam-
ilies if and only if G satisfies a condition introduced by M.F. Singer. For the proof,
techniques for handling families of vector bundles and connections are developed.

Résumé(Familles d’équations différentielles linéaires sur la droite projective)
Le but est de compléter des résultats de M.F. Singer concernant la variation des

groupes de Galois différentiels. Soit C un corps algébriquement clos, de caractéris-
tique 0. On considère des familles de connections de rang n sur la droite projective,
paramétrisées par des schémas X sur C. Soit G ⊂ GLn un sous-groupe algébrique.
On montre que X(= G), l’ensemble des points fermés de X avec G comme groupe de
Galois différentiel, est constructible pour toute famille si et seulement si le groupe G

satisfait une condition introduite par M.F. Singer. Pour la démonstration, des tech-
niques concernant des familles de fibrés vectoriels et des connections sont développées.

1. Introduction

C is an algebraically closed field of characteristic 0 and X denotes a scheme of finite

type over C. We fix a vector space V of dimension n over C and an algebraic subgroup

G of GL(V ). We will define families of linear differential equations on the projective

line C, parametrized by X . These families are of a more general nature than the

moduli spaces, defined in [Ber02]. For each closed point x of X (i.e., x ∈ X(C)), the

differential equation corresponding to x has a differential Galois group, denoted by

Gal(x). It is shown that the condition “Gal(x) ⊂ G” for closed points x of X defines

a closed subset of X . This generalizes Theorem 4.2 of [Ber02], where this statement

is proved for moduli spaces.
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The aim is to show that the set of closed points x ∈ X for which the differential

Galois group Gal(x) of the corresponding equation is equal to G is a constructible

subset of X , i.e., of the form ∪n
i=1(Oi ∩ Fi) for open sets Oi and closed sets Fi.

This statement (and the earlier one) has to be made more precise by providing a

suitable definition of“family of differential equations”and a meaning for the expression

Gal(x) ⊂ G. Moreover, a condition on the group G is essential.

In his paper [Sin93], M.F. Singer defines a set of differential operators, by giving

some local data. He proves that under a certain condition on G, the subset of the

differential equations with Galois group equal to (a conjugate of) G is constructible.

This condition on G will be called the Singer condition. We consider the same prob-

lem, in our context of families of differential equations parametrized by a scheme X .

We will construct for any group G that does not satisfy the “Singer condition” an

example of a moduli family M such that {x ∈ M | Gal(x) = G} is not constructible.

Finally, from these constructions one deduces an alternative description of the Singer

condition.

2. The Singer condition

Let G be a linear algebraic group over C. First we will recall the Singer condition

on G, as given in [Sin93]. A character χ of G is a morphism of algebraic groups

χ : G → Gm, where Gm stands for the multiplicative group C∗. The set X(G)

of all characters is a finitely generated abelian group. Let ker X(G) denote the

intersection of the kernels of all χ ∈ X(G). This intersection is a characteristic

(closed) subgroup of G. As usual, Go denotes the connected component of the identity

of G. The group ker X(Go) is a normal, closed subgroup of Go and of G. Let

χ1, . . . , χs generate X(Go). Then ker X(Go) is equal to the intersection of the kernels

of χ1, . . . , χs. In other words ker X(Go) is the kernel of the morphismGo → Gs
m, given

by g 7→ (χ1(g), . . . , χs(g)). The image is a connected subgroup of Gs
m and therefore a

torus T . Hence Go/ker X(Go) is isomorphic to T . Moreover, by definition, T is the

largest torus factor group of Go. One considers the exact sequence:

1 −→ G0/ker X(G0) −→ G/ker X(G0) −→ G/G0 −→ 1.

Since G0/ker X(G0) is abelian, this sequence induces an action of G/G0 on

G0/ker X(G0) by conjugation.

Definition 2.1. — A linear algebraic group G satisfies the Singer Condition if the

action of G/G0 on G0/ker X(G0) is trivial.

The Singer condition can be stated somewhat simpler, using U(G) ⊂ G, the subgroup

generated by all unipotent elements in G.

Lemma 2.2. — U(G) = U(Go) is equal to ker X(Go) and the Singer condition is

equivalent to “Go/U(G) lies in the center of G/U(G)”.
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Proof. — Fix an embedding G ⊂ GL(V ), where V is a finite dimensional vector space

over C. First we prove that U(G) is a closed connected normal subgroup of G. Let

I + B, B 6= 0 be a unipotent element of G. Then I + B = eD, for some nilpotent

element D =
∑

(−1)i−1 Bi

i ∈ End(V ). The Zariski closure {(I +B)n|n ∈ Z} of the

group generated by I + B lies in G and is equal to the group {etD|t ∈ C}, which

is isomorphic to the additive group Ga over C. Hence U(G) is generated by these

connected subgroups of G and by Proposition 2.2.6 of [Spr98] the group U(G) is

closed and connected. Further U(G) is a normal subgroup and even a characteristic

subgroup, since the set of unipotent elements of G is stable under any automorphism

of G. The connectedness of U(G) implies Go ⊃ U(G) = U(Go).

Now we will show that Go/U(Go) is a torus. Since the unipotent radical Ru(Go)

lies in U(Go), we may divide Go by Ru(Go) and assume that Go to be reductive. Then

by [Spr98][corollary 8.1.6] we have Go = R(Go) · (Go, Go), where R(Go) is the radical

of Go, and where (Go, Go) is the commutator subgroup of Go. The latter group is a

semi-simple subgroup, according to the same corollary. By [Spr98][theorem 8.1.5] we

get that (Go, Go) is generated by unipotent elements, so (Go, Go) ⊂ U(Go). Since

R(Go) is a torus, its image Go/U(Go) is a torus, too. This proves U(Go) ⊃ ker X(Go).

The other inclusion follows from the observation that every unipotent element lies in

the kernel of every character.

Finally, the triviality of the action of G/Go on Go/U(Go) is clearly equivalent to

Go/U(Go) lies in the center of G/U(Go).

Remarks 2.3
(1) Let G ⊂ GL(V ) be an algebraic subgroup. For the moment we admit the

following items (see 3.4, 3.5 (2), 4.1 and 4.2):

– The definition of a family of differential equations, parametrized by X .

– The meaning of Gal(x) ⊂ G for x ∈ X(C).

– {x ∈ X(C) | Gal(x) ⊂ G} is closed.

– {x ∈ X(C) |Gal(x) ⊂ hGh−1 for some h ∈ GL(V )} is constructible.

Consider the following finiteness condition for the group G: (∗) G has finitely many

proper closed subgroups H1, . . . , Hs, such that every proper closed subgroup is con-

tained in a conjugate of one of the Hi. One easily deduces: If G satisfies (∗), then

{x ∈ X(C) | Gal(x) = G} is constructible.

(2) If G satisfies (∗), then G/U(G) is a finite group and in particular G satisfies

the Singer condition. Indeed, (∗) also holds for G/U(G). If T := Go/U(G) 6= {1},

then one can produce infinitely many proper normal subgroups of G/U(G). Namely,

for any integer m > 1 the subgroup T [m], consisting of the m-torsion elements of T ,

is a normal subgroup. One concludes that G/U(G) is finite.

(3) Consider G := SL2(C). The classification of the proper closed subgroups H

of G states that H is either contained in a Borel subgroup or in a conjugate of the
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infinite dihedral group DSL2
∞ or is conjugated to one of the special finite groups: the

tetrahedral group, the octahedral group, the icosahedral group. Thus G satisfies (∗)

and moreover, G/U(G) = {1}.

(4) The infinite dihedral group G = DSL2
∞ has the properties: Go = Gm, U(Go) = 1

and G/Go acts non-trivially on Go. Thus G does not satisfy the Singer condition.

For this group one can produce moduli spaces M such that {x ∈ M(C) | Gal(x) = G}

is not constructible (see example 2.6).

(5) For the following two examples, namely moduli spaces and the groups G3
a and,

Gn
m, the Singer condition is valid, but (∗) does not hold. We will show explicitly that

these groups define constructible subsets.

Example 2.4(A moduli space with differential Galois groups inG3
a)

Moduli spaces of the type considered here are defined in [Ber02]. V is a 4-

dimensional vector space over C with basis e1, . . . , e4. The element N ∈ End(V )

is given by N(ei) = 0 for i = 1, 2, 3 and N(e4) = e1. The data for the moduli problem

are:

– Three distinct singular points a1, a2, a3 ∈ C∗. The point ∞ is allowed to have

a, non prescribed, regular singularity.

– For each singular point ai, the differential operator d
d(z−ai)

+ N
z−ai

.

Some calculations lead to an identification GL(4, C) × GL(4, C) → M, where M is

the moduli space of the problem. Let m := (φ2, φ3) denote a closed point of the first

space, then the corresponding universal differential operator is

d

dz
+

N

z − a1
+
φ2Nφ

−1
2

z − a2
+
φ3Nφ

−1
3

z − a3
.

Let G := G3
a the subgroup of GL(V ) consisting of the maps of the form I+B, Be1 = 0

andBei ∈ Ce1 for i = 2, 3, 4. The condition Gal(m) ⊂ G3
a can be seen to be equivalent

to φ2(e1), φ3(e1) ∈ Ce1. This describes the set {m ∈ M | Gal(m) ⊂ G} completely.

The above differential operator evaluated at a point of {m ∈ M | Gal(m) ⊂ G} has

the form

d

dz
+









0 h1 h2 h3

0 0 0 0

0 0 0 0

0 0 0 0









, where

(h1, h2, h3) =
1

z − a1
(0, 0, 1) +

1

z − a2
(f1, f2, f3) +

1

z − a3
(g1, g2, g3).

Moreover, f1, f2, f3 are polynomials of degree ≤ 2 in the entries of φ2 and the g1, g2, g3
are polynomials of degree ≤ 2 in the entries of φ3.

Now G has infinitely many (non-conjugated) maximal proper closed subgroups and

there is no obvious reason why {m ∈ M | Gal(m) = G} should be constructible. We

continue the calculation. The differential Galois group Gal(m), with m such that
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Gal(m) ⊂ G, is in fact the differential Galois group for the three inhomogeneous

equations y′i = hi, i = 1, 2, 3 over C(z). Thus Gal(m) is a proper subgroup of

G if and only if there is a non trivial linear combination c1h1 + c2h2 + c3h3 with

c1, c2, c3 ∈ C such that y′ = c1h1 + c2h2 + c3h3 has a solution in C(z). Now y

exists if and only if c1h1 + c2h2 + c3h3 has residue 0 at the points a1, a2, a3. The

existence of such a linear combination translates into a linear dependence and the

explicit equation f1(a2)g2(a3) − f2(a2)g1(a3) = 0. This defines a closed subset of

{m ∈ M | Gal(m) ⊂ G} and so {m ∈ M | Gal(m) = G} is constructible. We note

that every linear subspace of G3
a
∼= C3, which contains (0, 0, 1), occurs as differential

Galois group.

Example 2.5(A moduli space with differential Galois groups inGn
m)

The data for the moduli problem are:

– A vector space V of dimension n over C and basis e1, . . . , en.

– Singular points a1, . . . , as, different from 0 and ∞, We allow ∞ to have a non-

prescribed regular singularity.

– Local differential operators d
d(z−ai)

+ Mi

z−ai
, where e1, . . . , en are eigenvectors for

all Mi ∈ End(V ).

The moduli space M can be identified with GL(V )s−1. At a closed point m =

(φ2, . . . , φs) ∈ GL(V )s−1 the universal differential operator reads

d

dz
+

s
∑

i=1

φiMiφ
−1
i

z − ai
,

where φ1 = I. The group Gn
m

∼= G ⊂ GL(V ) consists of the maps for which each ei

is an eigenvector. Above the closed subset {m ∈ M | Gal(m) ⊂ G} the differential

operator has the form

L :=
d

dz
+

s
∑

i=1

Ni

z − ai
,

with N1 = M1 and each Ni is a diagonal matrix w.r.t. the basis e1, . . . , en and having

the same eigenvalues asMi. The space {m ∈ M | Gal(m) ⊂ G} has positive dimension

and is rather large if there is at least one Mi with i > 1 having an eigenvalue with

multiplicity > 1. However the number of differential operators L is finite! Thus

only a finite number of algebraic subgroups of G ∼= Gn
m occur as differential Galois

group Gal(m). One concludes that for every algebraic subgroup H ⊂ G, the set

{m ∈ M | Gal(m) = H} is constructible.

This example is the general pattern for “families” with differential Galois groups

contained in some torus T . Again, there are only finitely many distinct differential

operators L possible and therefore only finitely many possibilities for the differential

Galois group. This implies that for every algebraic subgroup H ⊂ T the set of the

points with differential Galois group equal to H is constructible.
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